Polynomial greatest common divisorIn algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers. In the important case of univariate polynomials over a field the polynomial GCD may be computed, like for the integer GCD, by the Euclidean algorithm using long division. The polynomial GCD is defined only up to the multiplication by an invertible constant.
Calcul formelLe calcul formel, ou parfois calcul symbolique, est le domaine des mathématiques et de l’informatique qui s’intéresse aux algorithmes opérant sur des objets de nature mathématique par le biais de représentations finies et exactes. Ainsi, un nombre entier est représenté de manière finie et exacte par la suite des chiffres de son écriture en base 2. Étant donné les représentations de deux nombres entiers, le calcul formel se pose par exemple la question de calculer celle de leur produit.
Décomposition en éléments simplesEn mathématiques, la décomposition en éléments simples d'une fraction rationnelle (parfois appelée décomposition en fractions partielles) est son expression comme somme d'un polynôme et de fractions J/H où H est un polynôme irréductible et J un polynôme de degré strictement inférieur à celui de H. Cette décomposition est utilisée dans le calcul intégral pour faciliter la recherche des primitives de la fonction rationnelle associée. Elle est aussi utilisée pour calculer des transformées de Laplace inverses.