Sir William Vallance Douglas Hodge (hɒdʒ; 17 June 1903 – 7 July 1975) was a British mathematician, specifically a geometer.
His discovery of far-reaching topological relations between algebraic geometry and differential geometry—an area now called Hodge theory and pertaining more generally to Kähler manifolds—has been a major influence on subsequent work in geometry.
Hodge was born in Edinburgh in 1903, the younger son and second of three children of Archibald James Hodge (1869-1938), a searcher of records in the property market and a partner in the firm of Douglas and Company, and his wife, Jane (born 1875), daughter of confectionery business owner William Vallance. They lived at 1 Church Hill Place in the Morningside district.
He attended George Watson's College, and studied at Edinburgh University, graduating MA in 1923. With help from E. T. Whittaker, whose son J. M. Whittaker was a college friend, he then took the Cambridge Mathematical Tripos. At Cambridge he fell under the influence of the geometer H. F. Baker. He gained a Cambridge BA degree in 1925, receiving the MA in 1930 and the Doctor of Science (ScD) degree in 1950.
In 1926 he took up a teaching position at the University of Bristol, and began work on the interface between the Italian school of algebraic geometry, particularly problems posed by Francesco Severi, and the topological methods of Solomon Lefschetz. This made his reputation, but led to some initial scepticism on the part of Lefschetz. According to Atiyah's memoir, Lefschetz and Hodge in 1931 had a meeting in Max Newman's rooms in Cambridge, to try to resolve issues. In the end Lefschetz was convinced.
In 1928 he was elected a Fellow of the Royal Society of Edinburgh. His proposers were Sir Edmund Taylor Whittaker, Ralph Allan Sampson, Charles Glover Barkla, and Sir Charles Galton Darwin. He was awarded the Society's Gunning Victoria Jubilee Prize for the period 1964 to 1968.
In 1930 Hodge was awarded a Research Fellowship at St. John's College, Cambridge.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, une variété kählérienne ou variété de Kähler est une variété différentielle équipée d'une structure unitaire satisfaisant une condition d'intégrabilité. C'est en particulier une variété riemannienne, une variété symplectique et une variété complexe, ces trois structures étant mutuellement compatibles. Les variétés kählériennes sont un objet d'étude naturel en géométrie différentielle complexe. Elles doivent leur nom au mathématicien Erich Kähler. Plusieurs définitions équivalentes existent.
Henry Frederick Baker ( – ), est un mathématicien britannique, qui travailla principalement en géométrie algébrique, mais aussi connu pour ses contributions aux équations aux dérivées partielles, liées à ce qui allait devenir connu sous le nom de solitons, et aux groupes de Lie. Il est né à Cambridge, de Henty Baker, un majordome, et Sarah Ann Britham. Il a fait ses études à la avant de remporter une bourse d'études au St John's College de Cambridge, en . Baker est diplômé en tant que Senior Wrangler à l'issue du Tripos en 1887 entre crochets avec 3 autres.
La théorie de Hodge est l'étude, avec l'apport notamment de la topologie algébrique, des formes différentielles sur une variété lisse. En conséquence elle éclaire l'étude des variétés riemanniennes et kählériennes, ainsi que l'étude géométrique des motifs. Elle tient son nom du mathématicien écossais William Hodge. Un des problèmes du prix du millénaire a trait à cette théorie : la conjecture de Hodge.
In this thesis, we apply cochain complexes as an algebraic model of space in a diverse range of mathematical and scientific settings. We begin with an algebraic-discrete Morse theory model of auto-encoding cochain data, connecting the homotopy theory of d ...
The field of computational topology has developed many powerful tools to describe the shape of data, offering an alternative point of view from classical statistics. This results in a variety of complex structures that are not always directly amenable for ...
Phase synchronizations in models of coupled oscillators such as the Kuramoto model have been widely studied with pairwise couplings on arbitrary topologies, showing many unexpected dynamical behaviors. Here, based on a recent formulation the Kuramoto model ...