In statistics, a weighted median of a sample is the 50% weighted percentile. It was first proposed by F. Y. Edgeworth in 1888. Like the median, it is useful as an estimator of central tendency, robust against outliers. It allows for non-uniform statistical weights related to, e.g., varying precision measurements in the sample. For distinct ordered elements with positive weights such that , the weighted median is the element satisfying and Consider a set of elements in which two of the elements satisfy the general case. This occurs when both element's respective weights border the midpoint of the set of weights without encapsulating it; Rather, each element defines a partition equal to . These elements are referred to as the lower weighted median and upper weighted median. Their conditions are satisfied as follows: Lower Weighted Median and Upper Weighted Median and Ideally, a new element would be created using the mean of the upper and lower weighted medians and assigned a weight of zero. This method is similar to finding the median of an even set. The new element would be a true median since the sum of the weights to either side of this partition point would be equal. Depending on the application, it may not be possible or wise to create new data. In this case, the weighted median should be chosen based on which element keeps the partitions most equal. This will always be the weighted median with the lowest weight. In the event that the upper and lower weighted medians are equal, the lower weighted median is generally accepted as originally proposed by Edgeworth. The sum of weights in each of the two partitions should be as equal as possible. If the weights of all numbers in the set are equal, then the weighted median reduces down to the median. For simplicity, consider the set of numbers with each number having weights respectively. The median is 3 and the weighted median is the element corresponding to the weight 0.3, which is 4. The weights on each side of the pivot add up to 0.45 and 0.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (2)

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.