In fluid dynamics, the no-slip condition for viscous fluids assumes that at a solid boundary, the fluid will have zero velocity relative to the boundary. The fluid velocity at all fluid–solid boundaries is equal to that of the solid boundary. Conceptually, one can think of the outermost molecules of fluid as stuck to the surfaces past which it flows. Because the solution is prescribed at given locations, this is an example of a Dirichlet boundary condition. For highly viscous foodstuffs that contain a high level of fat, such as mayonnaise and melted cheese, the no-slip condition cannot be applied, due to their "self-lubricating" properties. Particles close to a surface do not move along with a flow when adhesion is stronger than cohesion. At the fluid-solid interface, the force of attraction between the fluid particles and solid particles (Adhesive forces) is greater than that between the fluid particles (Cohesive forces). This force imbalance brings down the fluid velocity to zero. The no slip condition is only defined for viscous flows and where continuum concept is valid. As with most of the engineering approximations, the no-slip condition does not always hold in reality. For example, at very low pressure (e.g. at high altitude), even when the continuum approximation still holds there may be so few molecules near the surface that they "bounce along" down the surface. A common approximation for fluid slip is: where is the coordinate normal to the wall and is called the slip length. For an ideal gas, the slip length is often approximated as , where is the mean free path. Some highly hydrophobic surfaces have also been observed to have a nonzero but nanoscale slip length. While the no-slip condition is used almost universally in modeling of viscous flows, it is sometimes neglected in favor of the 'no-penetration condition' (where the fluid velocity normal to the wall is set to the wall velocity in this direction, but the fluid velocity parallel to the wall is unrestricted) in elementary analyses of inviscid flow, where the effect of boundary layers is neglected.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (9)
Mécanique fluide incompressible: Viscosité et hydrostatique
Explore la viscosité, les relations stress-souche et les équilibres de force dans la mécanique des fluides incompressibles.
Déformations et circulation
Couvre les déformations, la rotation et la circulation dans les courbes fermées, ainsi que la production de vorticité dans le flux de fluide.
Flux visqueux dans les fluides newtoniens
Explore le flux visqueux dans les fluides Newtoniens, en se concentrant sur les conditions sans glissement et les équations de cisaillement laminaire.
Afficher plus
Publications associées (32)

DeepBND: A machine learning approach to enhance multiscale solid mechanics

Annalisa Buffa, Simone Deparis, Pablo Antolin Sanchez, Felipe Figueredo Rocha

Effective properties of materials with random heterogeneous structures are typically determined by homogenising the mechanical quantity of interest in a window of observation. The entire problem setting encompasses the solution of a local PDE and some aver ...
2023

Flowing Gas Experiments Reveal Mechanistic Details of Interfacial Reactions on a Molecular Level at Knudsen Flow Conditions

Christian Ludwig, Michel Rossi, Riccardo Iannarelli

Knudsen flow experiments and its interpretation in terms of adsorption/desorption kinetics as well as quantitative uptake on substrates of interest is presented together with the description of critical design parameters of the Knudsen Flow Reactor (KFR). ...
2022

Gazebo Fluids: SPH-based simulation of fluid interaction with articulated rigid body dynamics

Auke Ijspeert, Jonathan Patrick Arreguit O'Neill, Wei Wang, Emmanouil Angelidis

Physical simulation is an indispensable component of robotics simulation platforms that serves as the basis for a plethora of research directions. Looking strictly at robotics, the common characteristic of the most popular physics engines, such as ODE, DAR ...
IEEE2022
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.