Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Simulating the dynamics and the non-equilibrium steady state of an open quantum system are hard computational tasks on conventional computers. For the simulation of the time evolution, several efficient quantum algorithms have recently been developed. Howe ...
VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF2021
Defects in solid-state systems can be both detrimental, deteriorating the quality of materials, or desired, thanks to the novel functionality they bring. Optically active point defects, producing fluorescent light, are a great example of the latter. Natura ...
We introduce Wigner measures for infinite-dimensional open quantum systems; important examples of such systems are encountered in quantum control theory. In addition, we propose an axiomatic definition of coherent quantum feedback. ...
Quantum computing is one of the great scientific challenges of the 21st century. Small-scalesystems today promise to surpass classical computers in the coming years and to enable thesolution of classically intractable computational tasks in the fields of q ...
With the development of quantum optics, photon correlations acquired a prominent role as a tool to test our understanding of physics, and played a key role in verifying the validity of quantum mechanics. The spatial and temporal correlations in a light fie ...
Cavity quantum electrodynamics (QED) manipulates the coupling of light with matter, and allows several emitters to couple coherently with one light mode1. However, even in a many-body system, the light–matter coupling mechanism has so far been restricted t ...
Quantum computing could potentially offer faster solutions for some of today's classically intractable problems using quantum processors as computational support for quantum algorithms [1]. Quantum processors, in the most frequent embodiment, comprise an a ...
A key open question in quantum computing is whether quantum algorithms can potentially offer a significant advantage over classical algorithms for tasks of practical interest. Understanding the limits of classical computing in simulating quantum systems is ...
Magnetic impurities generate a wealth of phenomena on surfaces. On metals, conducting electrons screen the magnetic moment giving rise to the Kondo effect. On superconductors, the Yu-Shiba-Rusinov (YSR) states emerge inside the superconducting gap due to t ...
Quantum computing holds the promise to solve many of today's intractable problems. A solid-state quantum computer (QC) is generally made of an array of qubits implemented in one of many solid-state technologies and operating at deep-cryogenic temperatures ...