Concept

Table of Newtonian series

In mathematics, a Newtonian series, named after Isaac Newton, is a sum over a sequence written in the form where is the binomial coefficient and is the falling factorial. Newtonian series often appear in relations of the form seen in umbral calculus. The generalized binomial theorem gives A proof for this identity can be obtained by showing that it satisfies the differential equation The digamma function: The Stirling numbers of the second kind are given by the finite sum This formula is a special case of the kth forward difference of the monomial xn evaluated at x = 0: A related identity forms the basis of the Nörlund–Rice integral: where is the Gamma function and is the Beta function. The trigonometric functions have umbral identities: and The umbral nature of these identities is a bit more clear by writing them in terms of the falling factorial . The first few terms of the sin series are which can be recognized as resembling the Taylor series for sin x, with (s)n standing in the place of xn. In analytic number theory it is of interest to sum where B are the Bernoulli numbers. Employing the generating function its Borel sum can be evaluated as The general relation gives the Newton series where is the Hurwitz zeta function and the Bernoulli polynomial. The series does not converge, the identity holds formally. Another identity is which converges for . This follows from the general form of a Newton series for equidistant nodes (when it exists, i.e.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.