Concept

Q-derivative

In mathematics, in the area of combinatorics and quantum calculus, the q-derivative, or Jackson derivative, is a q-analog of the ordinary derivative, introduced by Frank Hilton Jackson. It is the inverse of Jackson's q-integration. For other forms of q-derivative, see . The q-derivative of a function f(x) is defined as It is also often written as . The q-derivative is also known as the Jackson derivative. Formally, in terms of Lagrange's shift operator in logarithmic variables, it amounts to the operator which goes to the plain derivative, as . It is manifestly linear, It has a product rule analogous to the ordinary derivative product rule, with two equivalent forms Similarly, it satisfies a quotient rule, There is also a rule similar to the chain rule for ordinary derivatives. Let . Then The eigenfunction of the q-derivative is the q-exponential eq(x). Q-differentiation resembles ordinary differentiation, with curious differences. For example, the q-derivative of the monomial is: where is the q-bracket of n. Note that so the ordinary derivative is regained in this limit. The n-th q-derivative of a function may be given as: provided that the ordinary n-th derivative of f exists at x = 0. Here, is the q-Pochhammer symbol, and is the q-factorial. If is analytic we can apply the Taylor formula to the definition of to get A q-analog of the Taylor expansion of a function about zero follows: Th following representation for higher order -derivatives is known: is the -binomial coefficient. By changing the order of summation as , we obtain the next formula: Higher order -derivatives are used to -Taylor formula and the -Rodrigues' formula (the formula used to construct -orthogonal polynomials). Post quantum calculus is a generalization of the theory of quantum calculus, and it uses the following operator: Wolfgang Hahn introduced the following operator (Hahn difference): When this operator reduces to -derivative, and when it reduces to forward difference. This is a successful tool for constructing families of orthogonal polynomials and investigating some approximation problems.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.