Concept

Q-analogue

Résumé
En mathématiques, plus précisément dans le domaine de la combinatoire, un q-analogue d'un théorème, d'une identité ou d'une expression est une généralisation impliquant un nouveau paramètre q et qui se spécialise en le théorème originel lorsque l'on prend la limite quand q tend vers 1. Typiquement, les mathématiciens sont intéressés par les cas où un q-analogue intervient naturellement, plutôt que par les cas où on ajoute arbitrairement un paramètre q à un théorème déjà connu. Les premiers q-analogues étudiés en détail furent les séries hypergéométriques basiques, qui furent introduites au . Les q-analogues trouvent des applications dans plusieurs domaines, incluant l'étude des fractales, la théorie des nombres, et des expressions de l'entropie de systèmes dynamiques chaotiques. Les q-analogues apparaissent aussi dans l'étude des groupes quantiques et des superalgèbres q-déformées. Il y a deux groupes principaux de q-analogues : les q-analogues classiques, qui furent introduits dans le travail de Leonhard Euler et furent ensuite étendus par , et les q-analogues non classiques. La dérivée d'une fonction de variable réelle en est la limite du taux d'accroissement quand tend vers , et on appelle traditionnellement la différence de sorte que . Mais, pour non nul, on peut aussi noter le quotient de sorte que . C'est ce dernier quotient qui est appelé la q-dérivée de en , laquelle tend bien vers quand tend vers 1, si est dérivable en . On note alors que la q-dérivée de la fonction vaut , qui tend bien vers la dérivée lorsque tend vers 1. Ceci justifie la définition suivante : On définit le q-analogue de l'entier positif par : On définit alors naturellement le q-analogue de la factorielle de l'entier par : {| |- | | |- | | |- | | |} Ce q-analogue de la factorielle possède l'interprétation combinatoire suivante : alors que est le nombre de permutations d'ordre , compte ces mêmes permutations en gardant trace du nombre d'inversions. C'est-à-dire que si l'on note le nombre d'inversions de la permutation et l'ensemble des permutations d'ordre n, on a : .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.