Histoire de la thermodynamique classiqueL'histoire de la thermodynamique classique tente de retracer l'origine et l'évolution des idées, des méthodes, des hommes et des connaissances de la thermodynamique, discipline étudiant le comportement thermique des corps et les changements d’état de la matière. Dans un premier temps, la thermodynamique ne s'intéresse qu'aux phénomènes thermiques (chaleur, température) liés à des propriétés macroscopiques des systèmes étudiés, ainsi qu'à l'explication des machines à vapeur.
Deuxième principe de la thermodynamiqueLe deuxième principe de la thermodynamique (également connu sous le nom de deuxième loi de la thermodynamique ou principe de Carnot) établit l'irréversibilité des phénomènes physiques, en particulier lors des échanges thermiques. C'est un principe d'évolution qui fut énoncé pour la première fois par Sadi Carnot en 1824. Il a depuis fait l'objet de nombreuses généralisations et formulations successives par Clapeyron (1834), Clausius (1850), Lord Kelvin, Ludwig Boltzmann en 1873 et Max Planck (voir Histoire de la thermodynamique et de la mécanique statistique), tout au long du et au-delà jusqu'à nos jours.
Contrainte (mécanique)vignette|Lignes de tension dans un rapporteur en plastique vu sous une lumière polarisée grâce à la photoélasticité. En mécanique des milieux continus, et en résistance des matériaux en règle générale, la contrainte mécanique (autrefois appelée tension ou « fatigue élastique ») décrit les forces que les particules élémentaires d'un milieu exercent les unes sur les autres par unité de surface. Ce bilan des forces locales est conceptualisé par un tenseur d'ordre deux : le tenseur des contraintes.
Fonction de partitionEn physique statistique, la fonction de partition Z est une grandeur fondamentale qui englobe les propriétés statistiques d'un système à l'équilibre thermodynamique. C'est une fonction de la température et d'autres paramètres, tels que le volume contenant un gaz par exemple. La plupart des variables thermodynamiques du système, telles que l'énergie totale, l'entropie, l'énergie libre ou la pression peuvent être exprimées avec cette fonction et ses dérivées.
Enthalpie de réactionLenthalpie de réaction est une grandeur de réaction associée à l'écriture de l'équation-bilan d'une réaction chimique effectuée à température et pression constantes. Elle s'exprime en joules par mole (J/mol) et correspond à la variation d'enthalpie du mélange réactionnel pour un avancement de la réaction en cours égal à 1 mol.
Chimie physiqueLa chimie physique est l’étude des bases physiques des systèmes chimiques et des procédés. En particulier, la description énergétique des diverses transformations fait partie de la chimie physique. Elle fait appel à des disciplines importantes comme la thermodynamique chimique (ou thermochimie), la cinétique chimique, la mécanique statistique, la spectroscopie et l’électrochimie.
Loi de HessLa loi de Hess est une loi de la thermochimie, élaborée par le chimiste suisse Germain Henri Hess. Elle est basée sur la propriété de l'enthalpie d'être une fonction d'état et donc sa variation ne dépend que de l'état final et de l'état initial, au cours d'une transformation. Elle s'énonce ainsi : L'enthalpie de réaction d'une réaction chimique est égale à la somme des enthalpies de formation des produits (état final), diminuée de la somme des enthalpies de formation des réactifs (état initial), en tenant compte de la stœchiométrie de la réaction.
Réaction endergoniquevignette|Graphe de l'évolution de l'énergie par le temps dans une réaction endergonique. Une réaction endergonique est une réaction chimique nécessitant un apport d'énergie. C'est une réaction pour laquelle la variation de l'enthalpie libre (, fonction de Gibbs) est positive. Les variations de l'énergie libre incluent les variations de l'enthalpie et de l'entropie, à la différence des réactions exothermiques et endothermiques, qui ne se définissent que par des variations de l'enthalpie seule, ces dernières étant liées à une perte ou un gain de chaleur.
Processus spontanéUn processus spontané est une évolution temporelle d'un système dans laquelle il perd de l'enthalpie libre (souvent sous forme de chaleur) et rejoint un état thermodynamiquement plus stable en parcourant un chemin sur sa surface d'énergie potentielle. La convention de signe des modifications de l'énergie libre suit la convention générale des mesures thermodynamiques, dans lesquelles une libération d'énergie libre depuis le système correspond à une variation négative de l'énergie libre du système, mais une variation positive pour son environnement.
Transformation de LegendreLa transformation de Legendre est une opération mathématique qui, schématiquement, transforme une fonction définie par sa valeur en un point en une fonction définie par sa tangente. Elle tire son nom du mathématicien Adrien-Marie Legendre. Les cas classiques d'utilisation de la transformation de Legendre se rencontrent en thermodynamique et en mécanique lagrangienne. En thermodynamique, elle permet de calculer le potentiel thermodynamique adapté à des conditions particulières.