Concept

Okubo algebra

In algebra, an Okubo algebra or pseudo-octonion algebra is an 8-dimensional non-associative algebra similar to the one studied by Susumu Okubo. Okubo algebras are composition algebras, flexible algebras (A(BA) = (AB)A), Lie admissible algebras, and power associative, but are not associative, not alternative algebras, and do not have an identity element. Okubo's example was the algebra of 3-by-3 trace-zero complex matrices, with the product of X and Y given by aXY + bYX – Tr(XY)I/3 where I is the identity matrix and a and b satisfy a + b = 3ab = 1. The Hermitian elements form an 8-dimensional real non-associative division algebra. A similar construction works for any cubic alternative separable algebra over a field containing a primitive cube root of unity. An Okubo algebra is an algebra constructed in this way from the trace-zero elements of a degree-3 central simple algebra over a field. Unital composition algebras are called Hurwitz algebras. If the ground field K is the field of real numbers and N is positive-definite, then A is called a Euclidean Hurwitz algebra. If K has characteristic not equal to 2, then a bilinear form (a, b) = 1/2[N(a + b) − N(a) − N(b)] is associated with the quadratic form N. Assuming A has a multiplicative unity, define involution and right and left multiplication operators by Evidently is an involution and preserves the quadratic form. The overline notation stresses the fact that complex and quaternion conjugation are partial cases of it. These operators have the following properties: The involution is an antiautomorphism, i.e. = a = N(a) 1 = a L() = L(a), R() = R(a), where * denotes the adjoint operator with respect to the form ( , ) Re(a b) = Re(b a) where Re x = (x + )/2 = (x, 1) Re((a b) c) = Re(a (b c)) L(a2) = L(a)2, R(a2) = R(a)2, so that A is an alternative algebra These properties are proved starting from polarized version of the identity (a b, a b) = (a, a)(b, b): Setting b = 1 or d = 1 yields L() = L(a)* and R() = R(c)*. Hence Re(a b) = (a b, 1) = (a, ) = (b a, 1) = Re(b a).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.