Local Hamiltonians of fermionic systems on a lattice can be mapped onto local qubit Hamiltonians. Maintaining the lo-cality of the operators comes at the ex-pense of increasing the Hilbert space with auxiliary degrees of freedom. In order to retrieve the l ...
VEREIN FORDERUNG OPEN ACCESS PUBLIZIERENS QUANTENWISSENSCHAF2023
Quantum many-body control is a central milestone en route to harnessing quantum technologies. However, the exponential growth of the Hilbert space dimension with the number of qubits makes it challenging to classically simulate quantum many-body systems an ...
We present TimeEvolver, a program for computing time evolution in a generic quantum system. It relies on well-known Krylov subspace techniques to tackle the problem of multiplying the exponential of a large sparse matrix iH, where His the Hamiltonian, with ...
The interior transmission eigenvalue problem is a system of partial differential equations equipped with Cauchy data on the boundary: the transmission conditions. This problem appears in the inverse scattering theory for inhomogeneous media when, for some ...
We consider scalar-valued shape functionals on sets of shapes which are small perturbations of a reference shape. The shapes are described by parameterizations and their closeness is induced by a Hilbert space structure on the parameter domain. We justify ...
We study many-body localization (MBL) in a pair-hopping model exhibiting strong fragmentation of the Hilbert space. We show that several Krylov subspaces have both ergodic statistics in the thermodynamic limit and a dimension that scales much slower than t ...
Automated, ship-board flow cytometers provide high-resolution maps of phytoplankton composition over large swaths of the world's oceans. They therefore pave the way for understanding how environmental conditions shape community structure. Identification of ...
Cakoni and Nguyen recently proposed very general conditions on the coefficients of Maxwell equations for which they established the discreten ess of the set of eigenvalues of the transmission problem and studied their locations. In this paper, we establish ...
In this thesis, the electromagnetic wave propagation is studied in nonstationary-medium scenarios. The electromagnetic fields under material time-modulation are shown to conserve their momentum but not their energy. The mathematical foundations and analysi ...
Every Gelfand pair (G, K) admits a decomposition G = K P, where P < G is an amenable subgroup. In particular, the Furstenberg boundary of G is homogeneous. Applications include the complete classification of non-positively curved Gelfand pairs, relying on ...