Exceptional inverse image functorIn mathematics, more specifically sheaf theory, a branch of topology and algebraic geometry, the exceptional inverse image functor is the fourth and most sophisticated in a series of . It is needed to express Verdier duality in its most general form. Let f: X → Y be a continuous map of topological spaces or a morphism of schemes. Then the exceptional inverse image is a functor Rf!: D(Y) → D(X) where D(–) denotes the of sheaves of abelian groups or modules over a fixed ring.
Image functors for sheavesIn mathematics, especially in sheaf theory—a domain applied in areas such as topology, logic and algebraic geometry—there are four image functors for sheaves that belong together in various senses. Given a continuous mapping f: X → Y of topological spaces, and the Sh(–) of sheaves of abelian groups on a topological space. The functors in question are f∗ : Sh(X) → Sh(Y) f∗ : Sh(Y) → Sh(X) f! : Sh(X) → Sh(Y) Rf! : D(Sh(Y)) → D(Sh(X)).
Verdier dualityIn mathematics, Verdier duality is a cohomological duality in algebraic topology that generalizes Poincaré duality for manifolds. Verdier duality was introduced in 1965 by as an analog for locally compact topological spaces of Alexander Grothendieck's theory of Poincaré duality in étale cohomology for schemes in algebraic geometry. It is thus (together with the said étale theory and for example Grothendieck's coherent duality) one instance of Grothendieck's six operations formalism.
Coherent dualityIn mathematics, coherent duality is any of a number of generalisations of Serre duality, applying to coherent sheaves, in algebraic geometry and complex manifold theory, as well as some aspects of commutative algebra that are part of the 'local' theory. The historical roots of the theory lie in the idea of the adjoint linear system of a linear system of divisors in classical algebraic geometry. This was re-expressed, with the advent of sheaf theory, in a way that made an analogy with Poincaré duality more apparent.
Catégorie dérivéeLa catégorie dérivée d'une catégorie est une construction, originellement introduite par Jean-Louis Verdier dans sa thèse et reprise dans SGA 41⁄2, qui permet notamment de raffiner et simplifier la théorie des foncteurs dérivés. Elle a amené à plusieurs développements importants, ainsi que des reformulations élégantes par exemple de la théorie des D-modules et des preuves de la qui généralise le vingt-et-unième problème de Hilbert. En particulier, le langage des catégories dérivées permet de simplifier des problèmes exprimés en termes de suites spectrales.
Faisceau (mathématiques)En mathématiques, un faisceau est un outil permettant de suivre systématiquement des données définies localement et rattachées aux ouverts d'un espace topologique. Les données peuvent être restreintes à des ouverts plus petits, et les données correspondantes à un ouvert sont équivalentes à l'ensemble des données compatibles correspondantes aux ouverts plus petits couvrant l'ouvert d'origine. Par exemple, de telles données peuvent consister en des anneaux de fonctions réelles continues ou lisses définies sur chaque ouvert.
Homological algebraHomological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of modules and syzygies) at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert. Homological algebra is the study of homological functors and the intricate algebraic structures that they entail; its development was closely intertwined with the emergence of .