Nombre surréelvignette|Représentation d'une partie de l'arbre des nombres surréels. En mathématiques, les nombres surréels sont les éléments d'une classe incluant celle des réels et celle des nombres ordinaux transfinis, et sur laquelle a été définie une structure de corps ; ceci signifie en particulier que l'on définit des inverses des nombres ordinaux transfinis ; ces ordinaux et leurs inverses sont respectivement plus grands et plus petits que n'importe quel nombre réel positif. Les surréels ne forment pas un ensemble au sens de la théorie usuelle.
Grand ordinal dénombrableEn mathématiques, et plus particulièrement en théorie des ensembles, il existe de nombreuses méthodes de description des ordinaux dénombrables. Les plus petits (jusqu'à ε0) peuvent être exprimés (de façon utile et non circulaire) à l'aide de leur forme normale de Cantor. Au-delà, on parle de grands ordinaux dénombrables ; de nombreux grands ordinaux (le plus souvent en rapport avec la théorie de la démonstration) possèdent des notations ordinales calculables.
Aleph (nombre)vignette|Aleph-zéro, le plus petit aleph En théorie des ensembles, les alephs sont les cardinaux des ensembles infinis bien ordonnés. En quelque sorte, le cardinal d'un ensemble représente sa « taille », indépendamment de toute structure que puisse avoir cet ensemble (celle d'ordre en particulier dans le cas présent). Ils sont nommés ainsi d'après la lettre aleph, notée א, première lettre de l'alphabet hébreu, qui est utilisée pour les représenter.
Ordinal limiteEn mathématiques et plus précisément en théorie des ensembles, un ordinal limite est un nombre ordinal non nul qui n'est pas un ordinal successeur. D'après la définition ci-dessus, un ordinal α est limite si et seulement s'il satisfait l'une des propositions équivalentes suivantes : α ≠ 0 et ∀ β β+1 ≠ α ; 0 < α et ∀ β < α β+1 < α ; α ≠ 0 et ∀ β < α ∃ γ β < γ < α ; α est non nul et égal à la borne supérieure de tous les ordinaux qui lui sont strictement inférieurs (l'ensemble des ordinaux strictement inférieurs à un ordinal successeur β +1 possède un plus grand élément, l'ordinal β) ; en tant qu'ensemble d'ordinaux, α n'est pas vide et ne possède pas de plus grand élément ; α peut s'écrire sous la forme ω·γ avec γ > 0 ; α est un point d'accumulation de la classe des nombres ordinaux, munie de la topologie de l'ordre.
Théorèmes d'incomplétude de GödelLes théorèmes d'incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, publiés par Kurt Gödel en 1931 dans son article (« Sur les propositions formellement indécidables des Principia Mathematica et des systèmes apparentés »). Ils ont marqué un tournant dans l'histoire de la logique en apportant une réponse négative à la question de la démonstration de la cohérence des mathématiques posée plus de 20 ans auparavant par le programme de Hilbert.
Primitive recursive arithmeticPrimitive recursive arithmetic (PRA) is a quantifier-free formalization of the natural numbers. It was first proposed by Norwegian mathematician , as a formalization of his finitistic conception of the foundations of arithmetic, and it is widely agreed that all reasoning of PRA is finitistic. Many also believe that all of finitism is captured by PRA, but others believe finitism can be extended to forms of recursion beyond primitive recursion, up to ε0, which is the proof-theoretic ordinal of Peano arithmetic.