Concept

Generalized polygon

In mathematics, a generalized polygon is an incidence structure introduced by Jacques Tits in 1959. Generalized n-gons encompass as special cases projective planes (generalized triangles, n = 3) and generalized quadrangles (n = 4). Many generalized polygons arise from groups of Lie type, but there are also exotic ones that cannot be obtained in this way. Generalized polygons satisfying a technical condition known as the Moufang property have been completely classified by Tits and Weiss. Every generalized n-gon with n even is also a near polygon. A generalized 2-gon (or a digon) is an incidence structure with at least 2 points and 2 lines where each point is incident to each line. For a generalized n-gon is an incidence structure (), where is the set of points, is the set of lines and is the incidence relation, such that: It is a partial linear space. It has no ordinary m-gons as subgeometry for . It has an ordinary n-gon as a subgeometry. For any there exists a subgeometry () isomorphic to an ordinary n-gon such that . An equivalent but sometimes simpler way to express these conditions is: consider the bipartite incidence graph with the vertex set and the edges connecting the incident pairs of points and lines. The girth of the incidence graph is twice the diameter n of the incidence graph. From this it should be clear that the incidence graphs of generalized polygons are Moore graphs. A generalized polygon is of order (s,t) if: all vertices of the incidence graph corresponding to the elements of have the same degree s + 1 for some natural number s; in other words, every line contains exactly s + 1 points, all vertices of the incidence graph corresponding to the elements of have the same degree t + 1 for some natural number t; in other words, every point lies on exactly t + 1 lines. We say a generalized polygon is thick if every point (line) is incident with at least three lines (points). All thick generalized polygons have an order.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.