Une géométrie finie est un système géométrique dont les points sont en nombre fini. La géométrie euclidienne usuelle n'est pas finie, une droite euclidienne possédant une infinité de points. Une géométrie basée sur les images affichées sur un écran d'ordinateur, où les pixels sont considérés comme des points, serait une géométrie finie. Bien qu'il existe de nombreux systèmes que l'on pourrait appeler des géométries finies, on porte principalement l'attention sur les espaces projectifs et affines finis en raison de leur régularité et de leur simplicité. D'autres exemples de géométries finies sont donnés par les plans de Möbius (ou plans inversifs) finis et les plans de Laguerre, qui font partie plus généralement des plans de Benz, et leurs analogues en dimension supérieure (géométries inversives finies). Les géométries finies peuvent être construites via l'algèbre linéaire, à partir d'espaces vectoriels sur un corps fini ; les plans affines et projectifs ainsi construits sont appelés des géométries de Galois. Les géométries finies peuvent également être définies purement axiomatiquement. Les géométries finies les plus courantes sont les géométries de Galois, puisque tout espace projectif fini de dimension trois ou plus est isomorphe à un espace projectif sur un corps fini (c'est-à-dire la "projectivisation" d'un espace vectoriel sur un corps fini). Cependant, en dimension deux, il existe des plans affines ou projectifs qui ne sont pas isomorphes à des géométries de Galois, à savoir les plans non arguésiens. On obtient des résultats similaires pour d'autres types de géométries finies.lien=//upload.wikimedia.org/wikipedia/commons/thumb/0/02/Order_2_affine_plane.svg/200px-Order_2_affine_plane.svg.png|droite|vignette|200x200px| Plan affine fini d'ordre 2, contenant 4 "points" et 6 "droites". Les droites de même couleur sont "parallèles". Le centre de la figure n'est pas un "point" de ce plan affin ; les deux "lignes" vertes ne "se croisent" pas. lien=//upload.wikimedia.org/wikipedia/commons/thumb/e/eb/Hesse_configuration.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (9)
ME-372: Finite element method
L'étudiant acquiert une initiation théorique à la méthode des éléments finis qui constitue la technique la plus courante pour la résolution de problèmes elliptiques en mécanique. Il apprend à applique
AR-302(h): Studio BA6 (Weinand)
Le studio Weinand propose une approche du projet par le matériau et la construction. Spécialisé dans l'innovation en construction bois, le laboratoire IBOIS offre un contexte riche d'expériences et de
COM-102: Advanced information, computation, communication II
Text, sound, and images are examples of information sources stored in our computers and/or communicated over the Internet. How do we measure, compress, and protect the informatin they contain?
Afficher plus
Concepts associés (23)
Plan de Fano
thumb|Une représentation du plan de Fano (les six segments et le cercle représentent les 7 droites). En géométrie projective finie, le plan de Fano, portant le nom du mathématicien Gino Fano, est le plus petit plan projectif fini, c'est-à-dire celui comportant le plus petit nombre de points et de droites, à savoir 7 de chaque. C'est le seul plan projectif (au sens des axiomes d'incidence) de 7 points, et c'est le plan projectif sur le corps fini à deux éléments.
Incidence geometry
In mathematics, incidence geometry is the study of incidence structures. A geometric structure such as the Euclidean plane is a complicated object that involves concepts such as length, angles, continuity, betweenness, and incidence. An incidence structure is what is obtained when all other concepts are removed and all that remains is the data about which points lie on which lines. Even with this severe limitation, theorems can be proved and interesting facts emerge concerning this structure.
Géométrie
La géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.