Introduit des intégrations de mots, expliquant comment ils capturent les significations des mots en fonction du contexte et de leurs applications dans les tâches de traitement du langage naturel.
Couvre les approches modernes du réseau neuronal en matière de PNL, en mettant l'accent sur l'intégration de mots, les réseaux neuronaux pour les tâches de PNL et les futures techniques d'apprentissage par transfert.
Explore la capacité d'interprétation des modèles dans les PNL, en se concentrant sur les méthodes d'analyse et les explications locales pour comprendre les prédictions des modèles.
Explore l'indexation sémantique latente, la construction de vocabulaire, la création de matrices de documents, la transformation de requêtes et la récupération de documents en utilisant la similarité cosinus.