In geometry and topology, the line at infinity is a projective line that is added to the real (affine) plane in order to give closure to, and remove the exceptional cases from, the incidence properties of the resulting projective plane. The line at infinity is also called the ideal line.
In projective geometry, any pair of lines always intersects at some point, but parallel lines do not intersect in the real plane. The line at infinity is added to the real plane. This completes the plane, because now parallel lines intersect at a point which lies on the line at infinity. Also, if any pair of lines do not intersect at a point on the line, then the pair of lines are parallel.
Every line intersects the line at infinity at some point. The point at which the parallel lines intersect depends only on the slope of the lines, not at all on their y-intercept.
In the affine plane, a line extends in two opposite directions. In the projective plane, the two opposite directions of a line meet each other at a point on the line at infinity. Therefore, lines in the projective plane are closed curves, i.e., they are cyclical rather than linear. This is true of the line at infinity itself; it meets itself at its two endpoints (which are therefore not actually endpoints at all) and so it is actually cyclical.
The line at infinity can be visualized as a circle which surrounds the affine plane. However, diametrically opposite points of the circle are equivalent—they are the same point. The combination of the affine plane and the line at infinity makes the real projective plane, .
A hyperbola can be seen as a closed curve which intersects the line at infinity in two different points. These two points are specified by the slopes of the two asymptotes of the hyperbola. Likewise, a parabola can be seen as a closed curve which intersects the line at infinity in a single point. This point is specified by the slope of the axis of the parabola.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En géométrie euclidienne, une conique est une courbe plane algébrique, définie initialement comme l’intersection d'un cône de révolution (supposé prolongé à l’infini de part et d’autre du sommet) avec un plan. Lorsque le plan de coupe ne passe pas par le sommet du cône, la conique est dite non dégénérée et réalise l’une des trois formes de courbe suivantes : ellipse, parabole ou hyperbole (le cercle étant un cas particulier de l'ellipse, parfois appelé quatrième forme). Ces courbes sont caractérisées par un paramètre réel appelé excentricité.
En géométrie, un faisceau est une famille d'objets géométriques partageant une propriété commune, par exemple l'ensemble de droites passant par un même point dans le plan, ou l'ensemble de cercles passant par deux points dans le plan. Si la définition d'un faisceau est assez vague, la caractéristique commune est que le faisceau est complètement déterminé par deux de ses éléments. De façon analogue, un ensemble d'objets géométriques déterminés par trois éléments quelconques est appelé un fibré.
En mathématiques, et plus particulièrement en géométrie et en topologie, on appelle point à l'infini un objet adjoint à l'espace que l'on veut étudier pour pouvoir plus commodément y définir certaines notions de limites « à l'infini », ou encore pour obtenir des énoncés plus uniformes, tels que « deux droites se coupent toujours en un point, situé à l'infini si elles sont parallèles ». La notion de point à l'infini apparait au dans le cadre du développement des méthodes de la perspective conique, avec l'invention de la « costruzione abbreviata » d'Alberti.
In this thesis, we study the homotopical relations of 2-categories, double categories, and their infinity-analogues. For this, we construct homotopy theories for the objects of interest, and show that there are homotopically full embeddings of 2-categories ...