Résumé
A hybrid algorithm is an algorithm that combines two or more other algorithms that solve the same problem, either choosing one based on some characteristic of the data, or switching between them over the course of the algorithm. This is generally done to combine desired features of each, so that the overall algorithm is better than the individual components. "Hybrid algorithm" does not refer to simply combining multiple algorithms to solve a different problem – many algorithms can be considered as combinations of simpler pieces – but only to combining algorithms that solve the same problem, but differ in other characteristics, notably performance. In computer science, hybrid algorithms are very common in optimized real-world implementations of recursive algorithms, particularly implementations of divide-and-conquer or decrease-and-conquer algorithms, where the size of the data decreases as one moves deeper in the recursion. In this case, one algorithm is used for the overall approach (on large data), but deep in the recursion, it switches to a different algorithm, which is more efficient on small data. A common example is in sorting algorithms, where the insertion sort, which is inefficient on large data, but very efficient on small data (say, five to ten elements), is used as the final step, after primarily applying another algorithm, such as merge sort or quicksort. Merge sort and quicksort are asymptotically optimal on large data, but the overhead becomes significant if applying them to small data, hence the use of a different algorithm at the end of the recursion. A highly optimized hybrid sorting algorithm is Timsort, which combines merge sort, insertion sort, together with additional logic (including binary search) in the merging logic. A general procedure for a simple hybrid recursive algorithm is short-circuiting the base case, also known as arm's-length recursion. In this case whether the next step will result in the base case is checked before the function call, avoiding an unnecessary function call.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
CS-250: Algorithms I
The students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Séances de cours associées (14)
Sous-algorithmesMOOC: Information, Calcul, Communication: Introduction à la pensée informatique
Introduit des sous-algorithmes et l'algorithme de tri d'insertion avec un accent sur les éléments pré-triés.
Algorithmes classiques hybrides quantiques: Introduction
Introduit des algorithmes quantiques-classiques hybrides, discutant de l'intégration des techniques de calcul quantiques et classiques.
Quicksort: Temps de fonctionnement prévu et arbre de décision
Discute de la durée de fonctionnement prévue des arbres aléatoires de tri rapide et de décision comme une abstraction de comparaison.
Afficher plus
Publications associées (21)
Concepts associés (8)
Tri par paquets
Le tri par paquets est un algorithme de tri qui fonctionne sur des nombres réels appartenant à un intervalle borné fixé à l'avance. Le principe de ce tri consiste à partitionner régulièrement l'intervalle d'entrée en autant de sous-intervalles que l'entrée comporte d'éléments à trier, et à distribuer les données selon leur valeurs en autant de paquets correspondant à ces sous-intervalles. Les paquets sont alors triés séparément à l'aide d'un autre algorithme de tri.
Tri rapide
En informatique, le tri rapide ou tri pivot (en anglais quicksort) est un algorithme de tri inventé par C.A.R. Hoare en 1961 et fondé sur la méthode de conception diviser pour régner. Il est généralement utilisé sur des tableaux, mais peut aussi être adapté aux listes. Dans le cas des tableaux, c'est un tri en place mais non stable. La complexité moyenne du tri rapide pour n éléments est proportionnelle à n log n, ce qui est optimal pour un tri par comparaison, mais la complexité dans le pire des cas est quadratique.
Diviser pour régner (informatique)
thumb|652x652px|Trois étapes (diviser, régner, combiner) illustrées avec l'algorithme du tri fusion En informatique, diviser pour régner (du latin , divide and conquer en anglais) est une technique algorithmique consistant à : Diviser : découper un problème initial en sous-problèmes ; Régner : résoudre les sous-problèmes (récursivement ou directement s'ils sont assez petits) ; Combiner : calculer une solution au problème initial à partir des solutions des sous-problèmes.
Afficher plus