Champ récepteurLe champ récepteur d'un neurone sensoriel ou d'un neurone sensitif est le volume de l'espace qui modifie la réponse de ce neurone, quand un stimulus suffisamment puissant et rapide survient en son sein. De tels champs récepteurs ont été identifiés dans les systèmes visuel, auditif et somatosensoriel. Ainsi, le champ récepteur d'un neurone du système visuel est la portion du champ visuel qui, lorsqu'on présente un stimulus lumineux en son sein, modifie la réponse de ce neurone.
NumPyNumPy est une bibliothèque pour langage de programmation Python, destinée à manipuler des matrices ou tableaux multidimensionnels ainsi que des fonctions mathématiques opérant sur ces tableaux. Plus précisément, cette bibliothèque logicielle libre et open source fournit de multiples fonctions permettant notamment de créer directement un tableau depuis un fichier ou au contraire de sauvegarder un tableau dans un fichier, et manipuler des vecteurs, matrices et polynômes.
Perceptron multicoucheEn intelligence artificielle, plus précisément en apprentissage automatique, le perceptron multicouche (multilayer perceptron MLP en anglais) est un type de réseau neuronal artificiel organisé en plusieurs couches. Un perceptron multicouche possède au moins trois couches : une couche d'entrée, au moins une couche cachée, et une couche de sortie. Chaque couche est constituée d'un nombre (potentiellement différent) de neurones. L'information circule de la couche d'entrée vers la couche de sortie uniquement : il s'agit donc d'un réseau à propagation directe (feedforward).
Réseau de neurones récurrentsUn réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.
Redresseur (réseaux neuronaux)vignette|Graphique de la fonction Unité Linéaire Rectifiée En mathématiques, la fonction Unité Linéaire Rectifiée (ou ReLU pour Rectified Linear Unit) est définie par : pour tout réel Elle est fréquemment utilisée comme fonction d'activation dans le contexte du réseau de neurones artificiels pour sa simplicité de calcul, en particulier de sa dérivée. Un désavantage de la fonction ReLU est que sa dérivée devient nulle lorsque l'entrée est négative ce qui peut empêcher la rétropropagation du gradient.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Deep belief networkIn machine learning, a deep belief network (DBN) is a generative graphical model, or alternatively a class of deep neural network, composed of multiple layers of latent variables ("hidden units"), with connections between the layers but not between units within each layer. When trained on a set of examples without supervision, a DBN can learn to probabilistically reconstruct its inputs. The layers then act as feature detectors. After this learning step, a DBN can be further trained with supervision to perform classification.
Visual spatial attentionVisual spatial attention is a form of visual attention that involves directing attention to a location in space. Similar to its temporal counterpart visual temporal attention, these attention modules have been widely implemented in video analytics in computer vision to provide enhanced performance and human interpretable explanation of deep learning models. Spatial attention allows humans to selectively process visual information through prioritization of an area within the visual field.
Deeplearning4jEclipse Deeplearning4j is a programming library written in Java for the Java virtual machine (JVM). It is a framework with wide support for deep learning algorithms. Deeplearning4j includes implementations of the restricted Boltzmann machine, deep belief net, deep autoencoder, stacked denoising autoencoder and recursive neural tensor network, word2vec, doc2vec, and GloVe. These algorithms all include distributed parallel versions that integrate with Apache Hadoop and Spark.
AlphaGoAlphaGo est un programme informatique capable de jouer au jeu de go, développé par l'entreprise britannique DeepMind et racheté en 2014 par Google. En , il devient le premier programme à battre un joueur professionnel (le français Fan Hui) sur un goban de taille normale (19×19) sans handicap. Il s'agit d'une étape symboliquement forte puisque le programme joueur de go est alors un défi complexe de l'intelligence artificielle. En , il bat Lee Sedol, un des meilleurs joueurs mondiaux ( professionnel).