Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit des concepts fondamentaux d'apprentissage automatique, couvrant la régression, la classification, la réduction de dimensionnalité et des modèles générateurs profonds.
Explore les réseaux profonds et convolutifs, couvrant la généralisation, l'optimisation et les applications pratiques dans l'apprentissage automatique.
Introduit des fondamentaux d'apprentissage profond, couvrant les représentations de données, les réseaux neuronaux et les réseaux neuronaux convolutionnels.
Couvre la chaîne de Markov Monte Carlo et le rôle des réseaux neuronaux dans la représentation des états quantiques et l'approximation de l'état fondamental pour les systèmes de spins frustrés.
Explore les signaux neuraux, le traitement EMG, les synergies musculaires et le contrôle de la prothèse à l'aide de techniques avancées de traitement des signaux.
Plongez dans les défis et les avantages de l'apprentissage profond, en soulignant la transition vers les réseaux neuronaux convolutifs et l'impact de la largeur du réseau sur le paysage des pertes.
Explore les réseaux neuronaux convolutifs, l'augmentation des données, la dégradation du poids et le décrochage pour améliorer les performances du modèle.
Explore le modèle de perceptron multicouche, la formation, l'optimisation, le prétraitement des données, les fonctions d'activation, la rétropropagation et la régularisation.
Couvre les bases des réseaux neuronaux, des fonctions d'activation, de la formation, du traitement d'image, des CNN, de la régularisation et des méthodes de réduction de dimensionnalité.