Couvre la divergence Kullback-Leibler, la régularisation et les statistiques bayésiennes pour lutter contre le surajustement dans les modèles d'apprentissage automatique.
Discute de l'inférence bayésienne pour la moyenne d'une distribution gaussienne avec variance connue, couvrant la moyenne postérieure, la variance et l'estimateur MAP.
Explore les techniques bayésiennes pour les problèmes de valeur extrême, y compris l'inférence de la chaîne Markov Monte Carlo et de Bayesian, en soulignant l'importance de l'information antérieure et l'utilisation des graphiques.
Explore les statistiques non paramétriques, les méthodes bayésiennes et la régression linéaire en mettant l'accent sur l'estimation de la densité du noyau et la distribution postérieure.