Présente des outils collaboratifs de science des données comme les carnets Jupyter, Docker et Git, mettant l'accent sur la version des données et la conteneurisation.
Discute des techniques avancées d'optimisation Spark pour gérer efficacement les Big Data, en se concentrant sur la parallélisation, les opérations de mélange et la gestion de la mémoire.
Examine les éléments fondamentaux de la gestion des données, y compris les modèles, les sources et les querelles, en soulignant l'importance de comprendre et de résoudre les problèmes de données.
Explore les changements matériels, l'optimisation des requêtes, la répartition de la charge de travail, et des stratégies efficaces pour le milieu universitaire et l'équilibre entre vie professionnelle et vie privée.
Se penche sur la science des données dans la santé personnalisée et mondiale, en mettant l'accent sur les technologies améliorant la confidentialité et les applications de l'IA dans les soins de santé.
Explore les données urbaines historiques de Lausanne, en mettant l'accent sur l'information sur le recensement, les noms de rue, les numéros de maison et les processus de numérisation.