Résumé
Flux balance analysis (FBA) is a mathematical method for simulating metabolism in genome-scale reconstructions of metabolic networks. In comparison to traditional methods of modeling, FBA is less intensive in terms of the input data required for constructing the model. Simulations performed using FBA are computationally inexpensive and can calculate steady-state metabolic fluxes for large models (over 2000 reactions) in a few seconds on modern personal computers. The related method of metabolic pathway analysis seeks to find and list all possible pathways between metabolites. FBA finds applications in bioprocess engineering to systematically identify modifications to the metabolic networks of microbes used in fermentation processes that improve product yields of industrially important chemicals such as ethanol and succinic acid. It has also been used for the identification of putative drug targets in cancer and pathogens, rational design of culture media, and host–pathogen interactions. The results of FBA can be visualized using flux maps similar to the image on the right, which illustrates the steady-state fluxes carried by reactions in glycolysis. The thickness of the arrows is proportional to the flux through the reaction. FBA formalizes the system of equations describing the concentration changes in a metabolic network as the dot product of a matrix of the stoichiometric coefficients (the stoichiometric matrix S) and the vector v of the unsolved fluxes. The right-hand side of the dot product is a vector of zeros representing the system at steady state. Linear programming is then used to calculate a solution of fluxes corresponding to the steady state. Some of the earliest work in FBA dates back to the early 1980s. Papoutsakis demonstrated that it was possible to construct flux balance equations using a metabolic map. It was Watson, however, who first introduced the idea of using linear programming and an objective function to solve for the fluxes in a pathway.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
ChE-411: Principles and applications of systems biology
The course introduces and develops the key concepts from systems biology and systems engineering in the context of complex biological networks. The lectures elaborate on techniques and methods to mode
BIOENG-320: Synthetic biology
This advanced Bachelor/Master level course will cover fundamentals and approaches at the interface of biology, chemistry, engineering and computer science for diverse fields of synthetic biology. This
CH-313: Chemical biology
Closely interfacing with bioengineering and medicine, this course provides foundational concepts in applying small-molecule chemical toolsets to probe the functions of living systems at the mechanisti
Séances de cours associées (24)
Composition cellulaire
Explore la composition d'une cellule, les coûts de la biosynthèse, les voies de biosynthèse, l'analyse de l'équilibre des flux et l'essentialité des gènes.
Analyse de l'équilibre des flux: plans d'optimisation et de phase phénotypique
Explore les principes d'analyse de l'équilibre des flux, l'optimisation, les plans de phase phénotypiques et la bioénergétique dans les réseaux métaboliques.
Modélisation métabolique : FBA et TFA
Introduit l'analyse de l'équilibre des flux (FBA) et l'analyse du flux total (TFA) dans la modélisation métabolique à l'aide de MATLAB.
Afficher plus
Publications associées (103)