En mathématiques, et plus précisément en analyse, on appelle théorèmes abéliens et taubériens des théorèmes donnant des conditions pour que des méthodes distinctes de sommation de séries aboutissent au même résultat. Leurs noms viennent de Niels Henrik Abel et Alfred Tauber, les premiers exemples en étant le théorème d'Abel montrant que la sommation d'Abel d'une série convergente a pour valeur la somme de cette série, et le théorème de Tauber montrant que si la sommation d'Abel est possible, et que les coefficients de la série considérée sont suffisamment petits, alors la série converge (vers sa somme d'Abel). De manière générale, les théorèmes abéliens donnent des conditions pour que deux méthodes de sommation aboutissent au même résultat (et, le plus souvent, pour que ce résultat soit la somme usuelle de la série lorsque celle-ci converge) ; les théorèmes taubériens donnent des conditions sur une série pour que, si elle est sommable par une méthode donnée, elle soit en fait convergente (vers la même somme). Mais il n'existe pas réellement de définition universellement acceptée de la signification de ces termes. Pour une méthode de sommation donnée, L, le théorème abélien correspondant affirme que si c = (cn) est une suite convergente de limite C, alors L(c) = C. Un exemple est donné par la méthode de Cesàro (d'ordre 1), où l'on prend pour L la limite des moyennes arithmétiques des N premiers termes de c, quand N tend vers l'infini : on montre que si c converge vers C, il en est de même de la suite (dN), où dN = (c1 + c2 + ... +cN)/N (ce résultat s'appelle le lemme de Cesàro). Le nom de ces théorèmes vient du théorème d'Abel sur les séries entières. Dans ce cas, L est la limite radiale de la série entière de terme général anzn, obtenue en posant z = r·e iθ et en faisant tendre r vers 1 par valeurs inférieures ; cette méthode n'a évidemment d'intérêt que si le rayon de convergence de la série vaut 1, et dans ce cas, le théorème d'Abel affirme que la limite radiale de la série est égale à sa valeur en r=1 si la série converge en ce point (on trouvera dans l'article série alternée des entiers l'exemple classique donné par Euler du calcul de la valeur 1-2+3-.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
MATH-261: Discrete optimization
This course is an introduction to linear and discrete optimization. Warning: This is a mathematics course! While much of the course will be algorithmic in nature, you will still need to be able to p
MATH-483: Gödel and recursivity
Gödel incompleteness theorems and mathematical foundations of computer science
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Séances de cours associées (37)
Probabilités de frappe: Chaînes Markov
Couvre les probabilités de frappe dans les chaînes Markov avec des sous-ensembles disjoints, la fonction h(i), les théorèmes, les preuves, et le temps prévu pour frapper les calculs.
Approximation dans les espaces de Sobolev
Couvre l'approximation des fonctions dans les espaces de Sobolev en utilisant des fonctions lisses.
Dérivés et limites : généralisation et indétermination
Couvre la généralisation du théorème de TAF, les dérivées latérales, les limites des dérivées, et l'indétermination.
Afficher plus
Publications associées (6)

Sampling Curves with Finite Rate of Innovation

Thierry Blu, Hanjie Pan, Pier Luigi Dragotti

In this paper, we extend the theory of sampling signals with finite rate of innovation (FRI) to a specific class of two-dimensional curves, which are defined implicitly as the zeros of a mask function. Here the mask function has a parametric representation ...
Institute of Electrical and Electronics Engineers2014

Finite graphs and amenability

Gábor Elek

Hyperfiniteness or amenability of measurable equivalence relations and group actions has been studied for almost fifty years. Recently, unexpected applications of hyperfiniteness were found in computer science in the context of testability of graph propert ...
Academic Press Inc Elsevier Science2012

The Momentum Map Representation of Images

Tudor Ratiu, François Gay-Balmaz, Martins Bruveris

This paper discusses the mathematical framework for designing methods of Large Deformation Diffeomorphic Matching (LDM) for image registration in computational anatomy. After reviewing the geometrical framework of LDM image registration methods, we prove a ...
Springer Verlag2011
Afficher plus
Concepts associés (2)
Série divergente
En mathématiques, une série infinie est dite divergente si la suite de ses sommes partielles n'est pas convergente. En ce qui concerne les séries de nombres réels, ou de nombres complexes, une condition nécessaire de convergence est que le terme général de la série tende vers 0. Par contraposition, cela fournit de nombreux exemples de séries divergentes, par exemple celle dont tous les termes valent 1.
Démonstration (logique et mathématiques)
vignette| : un des plus vieux fragments des Éléments d'Euclide qui montre une démonstration mathématique. En mathématiques et en logique, une démonstration est un ensemble structuré d'étapes correctes de raisonnement. Dans une démonstration, chaque étape est soit un axiome (un fait acquis), soit l'application d'une règle qui permet d'affirmer qu'une proposition, la conclusion, est une conséquence logique d'une ou plusieurs autres propositions, les prémisses de la règle.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.