Concept

Scaling dimension

Résumé
In theoretical physics, the scaling dimension, or simply dimension, of a local operator in a quantum field theory characterizes the rescaling properties of the operator under spacetime dilations x\to \lambda x. If the quantum field theory is scale invariant, scaling dimensions of operators are fixed numbers, otherwise they are functions of the distance scale. Scale-invariant quantum field theory In a scale invariant quantum field theory, by definition each operator O acquires under a dilation x\to \lambda x a factor \lambda^{-\Delta}, where \Delta is a number called the scaling dimension of O. This implies in particular that the two point correlation function \langle O(x) O(0)\rangle depends on the distance as (x^2)^{-\Delta}. More generally, correlation functions of several local operators must depend on the distances in such a way that \langle O_1(\lambda x_1) O_2(\lambda x_2)\ldots\rang
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement