DihedronA dihedron is a type of polyhedron, made of two polygon faces which share the same set of n edges. In three-dimensional Euclidean space, it is degenerate if its faces are flat, while in three-dimensional spherical space, a dihedron with flat faces can be thought of as a lens, an example of which is the fundamental domain of a lens space L(p,q). Dihedra have also been called bihedra, flat polyhedra, or doubly covered polygons.
Diamant triangulaireLe diamant triangulaire est une figure géométrique faisant partie des solides de Johnson (J12). Comme son nom le suggère, il peut être réalisé en rassemblant deux tétraèdres par une face, c'est un deltaèdre convexe. Bien que toutes ses faces soient en situation de congruence et qu'elles soient toutes uniformes, ce n'est pas un solide de Platon car certains de ses sommets joignent trois faces alors que d'autres en relient quatre. Les 92 solides de Johnson furent nommés et décrits par Norman Johnson en 1966.
Cubical bipyramidIn 4-dimensional geometry, the cubical bipyramid is the direct sum of a cube and a segment, {4,3} + { }. Each face of a central cube is attached with two square pyramids, creating 12 square pyramidal cells, 30 triangular faces, 28 edges, and 10 vertices. A cubical bipyramid can be seen as two cubic pyramids augmented together at their base. It is the dual of a octahedral prism. Being convex and regular-faced, it is a CRF polytope. It is a Hanner polytope with coordinates: [2] (0, 0, 0; ±1) [8] (±1, ±1, ±1;
Tronc (géométrie)Un tronc est la partie d'un solide située entre deux plans parallèles. Le solide est généralement un cône ou une pyramide. Les faces du solide obtenues dans les plans de coupe sont appelées bases du tronc, et la distance entre les deux plans de coupe est la hauteur du tronc. Le volume d'un tronc de pyramide ou de cône est le produit de sa hauteur par la moyenne arithmétique des aires de ses bases et de leur moyenne géométrique.
Rectified 600-cellIn geometry, the rectified 600-cell or rectified hexacosichoron is a convex uniform 4-polytope composed of 600 regular octahedra and 120 icosahedra cells. Each edge has two octahedra and one icosahedron. Each vertex has five octahedra and two icosahedra. In total it has 3600 triangle faces, 3600 edges, and 720 vertices. Containing the cell realms of both the regular 120-cell and the regular 600-cell, it can be considered analogous to the polyhedron icosidodecahedron, which is a rectified icosahedron and rectified dodecahedron.
Tetrahedral bipyramidIn 4-dimensional geometry, the tetrahedral bipyramid is the direct sum of a tetrahedron and a segment, {3,3} + { }. Each face of a central tetrahedron is attached with two tetrahedra, creating 8 tetrahedral cells, 16 triangular faces, 14 edges, and 6 vertices,. A tetrahedral bipyramid can be seen as two tetrahedral pyramids augmented together at their base. It is the dual of a tetrahedral prism, , so it can also be given a Coxeter-Dynkin diagram, , and both have Coxeter notation symmetry [2,3,3], order 48.
Icosahedral bipyramidIn 4-dimensional geometry, the icosahedral bipyramid is the direct sum of a icosahedron and a segment, {3,5} + { }. Each face of a central icosahedron is attached with two tetrahedra, creating 40 tetrahedral cells, 80 triangular faces, 54 edges, and 14 vertices. An icosahedral bipyramid can be seen as two icosahedral pyramids augmented together at their bases. It is the dual of a dodecahedral prism, Coxeter-Dynkin diagram , so the bipyramid can be described as . Both have Coxeter notation symmetry [2,3,5], order 240.
Simplicial polytopeIn geometry, a simplicial polytope is a polytope whose facets are all simplices. For example, a simplicial polyhedron in three dimensions contains only triangular faces and corresponds via Steinitz's theorem to a maximal planar graph. They are topologically dual to simple polytopes. Polytopes which are both simple and simplicial are either simplices or two-dimensional polygons. Simplicial polyhedra include: Bipyramids Gyroelongated dipyramids Deltahedra (equilateral triangles) Platonic tetrahedron, octahed
Hexaki-icosaèdreUn hexaki-icosaèdre est un polyèdre à 120 faces, qui sont des triangles scalènes. Il est parfois appelé hexakis icosaèdre, hexa-icosaèdre ou, plus rarement, disdyakis triacontaèdre (par imitation de l'anglais). Le préfixe hexaki-, d'origine grecque, signifie « 6 fois » et fait référence au nombre de faces : 6 fois les 20 faces de l'icosaèdre. L'hexaki-icosaèdre régulier est un solide de Catalan, puisqu'il est le dual de l'icosidodécaèdre tronqué, solide d'Archimède.
DuopyramidIn geometry of 4 dimensions or higher, a double pyramid or duopyramid or fusil is a polytope constructed by 2 orthogonal polytopes with edges connecting all pairs of vertices between the two. The term fusil is used by Norman Johnson as a rhombic-shape. The term duopyramid was used by George Olshevsky, as the dual of a duoprism. The lowest dimensional forms are 4 dimensional and connect two polygons. A p-q duopyramid or p-q'' fusil, represented by a composite Schläfli symbol {p} + {q}, and Coxeter-Dynkin diagram .