In this thesis we study stability from several viewpoints. After covering the practical importance, the rich history and the ever-growing list of manifestations of stability, we study the following. (i) (Statistical identification of stable dynamical syste ...
Intelligent fault diagnosis has been increasingly improved with the evolution of deep learning (DL) approaches. Recently, the emerging graph neural networks (GNNs) have also been introduced in the field of fault diagnosis with the goal to make better use o ...
Functional data are typically modeled as sample paths of smooth stochastic processes in order to mitigate the fact that they are often observed discretely and noisily, occasionally irregularly and sparsely. The smoothness assumption is imposed to allow for ...
This work studies multi-agent sharing optimization problems with the objective function being the sum of smooth local functions plus a convex (possibly non-smooth) function coupling all agents. This scenario arises in many machine learning and engineering ...
Nonparametric inference for functional data over two-dimensional domains entails additional computational and statistical challenges, compared to the one-dimensional case. Separability of the covariance is commonly assumed to address these issues in the de ...
How can we discern whether the covariance operator of a stochastic pro-cess is of reduced rank, and if so, what its precise rank is? And how can we do so at a given level of confidence? This question is central to a great deal of methods for functional dat ...
This thesis focuses on non-parametric covariance estimation for random surfaces, i.e.~functional data on a two-dimensional domain. Non-parametric covariance estimation lies at the heart of functional data analysis, and
considerations of statistical and com ...
We study the consistency of the estimator in spatial regression with partial differential equa-tion (PDE) regularization. This new smoothing technique allows to accurately estimate spatial fields over complex two-dimensional domains, starting from noisy ob ...
A functional (lagged) time series regression model involves the regression of scalar response time series on a time series of regressors that consists of a sequence of random functions. In practice, the underlying regressor curve time series are not always ...
Multiple generalized additive models are a class of statistical regression models wherein parameters of probability distributions incorporate information through additive smooth functions of predictors. The functions are represented by basis function expan ...