Concept

Conformational ensembles

In computational chemistry, conformational ensembles, also known as structural ensembles, are experimentally constrained computational models describing the structure of intrinsically unstructured proteins. Such proteins are flexible in nature, lacking a stable tertiary structure, and therefore cannot be described with a single structural representation. The techniques of ensemble calculation are relatively new on the field of structural biology, and are still facing certain limitations that need to be addressed before it will become comparable to classical structural description methods such as biological macromolecular crystallography. Ensembles are models consisting of a set of conformations that together attempt to describe the structure of a flexible protein. Even though the degree of conformational freedom is extremely high, flexible/disordered protein generally differ from fully random coil structures. The main purpose of these models is to gain insights regarding the function of the flexible protein, extending the structure-function paradigm from folded proteins to intrinsically disordered proteins. The calculation of ensembles rely on experimental measurements, mostly by Nuclear Magnetic Resonance spectroscopy and Small-angle X-ray scattering. These measurements yield short and long-range structural information. Chemical Shifts (CS) Residual Dipolar Couplings (RDCs) J-couplings Hydrogen-exchange Solvent-accessibility. Paramagnetic Relaxation Enhancements (PREs) Nuclear Overhauser effects (NOEs) SAXS topological restraints. The structure of disordered proteins may be approximated by running constrained molecular dynamics (MD) simulations where the conformational sampling is being influenced by experimentally derived constraints. Another approach uses selection algorithms such as ENSEMBLE and ASTEROIDS. Calculation procedures first generate a pool of random conformers (initial pool) so that they sufficiently sample the conformation space. The selection algorithms start by choosing a smaller set of conformers (an ensemble) from the initial pool.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (3)
CH-311: Macromolecular structure and interactions
This course covers the basic biophysical principles governing the thermodynamic and kinetic properties of biomacromolecules involved in chemical processes of life. The course is held in English.
BIO-212: Biological chemistry I
Biochemistry is a key discipline for the Life Sciences. Biological Chemistry I and II are two tightly interconnected courses that aim to describe and understand in molecular terms the processes that m
BIOENG-320: Synthetic biology
This advanced Bachelor/Master level course will cover fundamentals and approaches at the interface of biology, chemistry, engineering and computer science for diverse fields of synthetic biology. This
Séances de cours associées (18)
Protéines intrinsèquement désordonnées: Séparation de phase et interactions membranaires
Explore le comportement des protéines intrinsèquement désordonnées, la séparation de phase des polymères, la théorie de Flory-Huggins et les condensats biomoléculaires.
Conformations protéiques et calculs énergétiques
Explore les états énergétiques des protéines, les liaisons covalentes, les ponts salés et les interactions de van der Waals.
Conception des protéines: Méthodes de calcul
Couvre les défis de la conception des protéines, des fonctions énergétiques, des algorithmes de recherche et des applications en biologie synthétique, en soulignant l'importance de la conception des protéines et les méthodes utilisées pour la conception des protéines.
Afficher plus
Publications associées (51)

Structural Insights into Electrophiles and Electrophilic Metabolites Sensing and Signaling: The Missing Information

Yimon Aye, Chloé Rogg

Native reactive electrophilic species (RES) are long-recognized regulators of pathophysiology; yet, knowledge surrounding how RES regulate context-specific biology remains limited. The latest technological advances in profiling and precision decoding of RE ...
WILEY-V C H VERLAG GMBH2023

Deep learning approaches for conformational flexibility and switching properties in protein design

Patrick Daniel Barth, Mahdi Hijazi

Following the hugely successful application of deep learning methods to protein structure prediction, an increasing number of design methods seek to leverage generative models to design proteins with improved functionality over native proteins or novel str ...
2022

New Methods for the Integrative Dynamic Modeling of Biomolecular Structures

Sylvain Träger

The true understanding of most cellular functions is only really achievable through the structural determination of their underlying macromolecular assemblies. However, their size, large number of individual components and metastable states make their eluc ...
EPFL2021
Afficher plus
Concepts associés (1)
Structure tertiaire
En biochimie, la structure tertiaire ou tridimensionnelle est le repliement dans l'espace d'une chaîne polypeptidique. Ce repliement donne sa fonctionnalité à la protéine, notamment par la formation du site actif des enzymes. . La structure tertiaire correspond au degré d'organisation supérieur aux hélices α ou aux feuillets β. Ces protéines possèdent des structures secondaires associées le long de la chaîne polypeptidique. Le repliement et la stabilisation de protéines à structure tertiaire dépend de plusieurs types de liaisons faibles qui stabilisent l'édifice moléculaire.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.