We prove the non-planarity of a family of 3-regular graphs constructed from the solutions to the Markoff equation x2 + y2 + z2 = xyz modulo prime numbers greater than 7. The proof uses Euler characteristic and an enumeration of the short cycles in these gr ...
Recently, we have applied the generalized Littlewood theorem concerning contour integrals of the logarithm of the analytical function to find the sums over inverse powers of zeros for the incomplete gamma and Riemann zeta functions, polygamma functions, an ...
Recently, we have established and used the generalized Littlewood theorem concerning contour integrals of the logarithm of an analytical function to obtain a few new criteria equivalent to the Riemann hypothesis. Here, the same theorem is applied to calcul ...
Despite their impressive performance on image classification tasks, deep networks have a hard time generalizing to unforeseen corruptions of their data. To fix this vulnerability, prior works have built complex data augmentation strategies, combining multi ...
We confirm, for the primes up to 3000, the conjecture of Bourgain-Gamburd-Sarnak and Baragar on strong approximation for the Markoff surface modulo primes. For primes congruent to 3 modulo 4, we find data suggesting that some natural graphs constructed fro ...
At the prime 2, Behrens, Hill, Hopkins and Mahowald showed that M-2 (1, 4) admits a 32-periodic v(2)-self-map. More recently, in joint work with Mahowald, we showed that A(1) also admits a 32-periodic v(2)-self-map. This leads to the question of whether th ...
We define and study in terms of integral Iwahoriâ Hecke algebras a new class of geometric operators acting on the Bruhat-Tits building of connected reductive groups over p-adic fields. These operators, which we call U-operators, generalize the geometric n ...
Let Y be a simply connected simple algebraic group over an algebraically closed field k of characteristic p and let X be a maximal closed connected simple subgroup of Y.
Excluding some small primes in specific cases, we classify the p-restrict ...
We revisit a recent bound of I. Shparlinski and T. Zhang on bilinear forms with Kloosterman sums, and prove an extension for correlation sums of Kloosterman sums against Fourier coefficients of modular forms. We use these bounds to improve on earlier resul ...