Discrete optimization is a branch of optimization in applied mathematics and computer science.
As opposed to continuous optimization, some or all of the variables used in a discrete mathematical program are restricted to be discrete variables—that is, to assume only a discrete set of values, such as the integers.
Three notable branches of discrete optimization are:
combinatorial optimization, which refers to problems on graphs, matroids and other discrete structures
integer programming
constraint programming
These branches are all closely intertwined however since many combinatorial optimization problems
can be modeled as integer programs (e.g. shortest path) or constraint programs,
any constraint program can be formulated as an integer program and vice versa,
and constraint and integer programs can often be given a combinatorial interpretation.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
The course aims to introduce the basic concepts and results on metric embeddings, or more precisely on approximate embeddings. This area has been under rapid development since the 90's and it has stro
This course is an introduction to linear and discrete optimization.Warning: This is a mathematics course! While much of the course will be algorithmic in nature, you will still need to be able to p
vignette|280px|En théorie des graphes, principales topologies typiques de graphes. Les mathématiques appliquées sont une branche des mathématiques qui s'intéresse à l'application du savoir mathématique aux autres domaines.
In mathematics and statistics, a quantitative variable may be continuous or discrete if they are typically obtained by measuring or counting, respectively. If it can take on two particular real values such that it can also take on all real values between them (even values that are arbitrarily close together), the variable is continuous in that interval. If it can take on a value such that there is a non-infinitesimal gap on each side of it containing no values that the variable can take on, then it is discrete around that value.
L’optimisation combinatoire, (sous-ensemble à nombre de solutions finies de l'optimisation discrète), est une branche de l'optimisation en mathématiques appliquées et en informatique, également liée à la recherche opérationnelle, l'algorithmique et la théorie de la complexité. Dans sa forme la plus générale, un problème d'optimisation combinatoire (sous-ensemble à nombre de solutions finies de l'optimisation discrète) consiste à trouver dans un ensemble discret un parmi les meilleurs sous-ensembles (ou solutions) réalisables, la notion de meilleure solution étant définie par une fonction objectif.
Explore l'optimisation progressive accélérée et sans graduation dans l'apprentissage automatique, en discutant de leurs applications et de leurs taux de convergence.
In various robotics applications, the selection of function approximation methods greatly influences the feasibility and computational efficiency of algorithms. Tensor Networks (TNs), also referred to as tensor decomposition techniques, present a versatile ...
EPFL2024
Submodular functions are a widely studied topic in theoretical computer science. They have found several applications both theoretical and practical in the fields of economics, combinatorial optimization and machine learning. More recently, there have also ...
The monumental progress in the development of machine learning models has led to a plethora of applications with transformative effects in engineering and science. This has also turned the attention of the research community towards the pursuit of construc ...