In mathematics and statistics, a quantitative variable may be continuous or discrete if they are typically obtained by measuring or counting, respectively. If it can take on two particular real values such that it can also take on all real values between them (even values that are arbitrarily close together), the variable is continuous in that interval. If it can take on a value such that there is a non-infinitesimal gap on each side of it containing no values that the variable can take on, then it is discrete around that value. In some contexts a variable can be discrete in some ranges of the number line and continuous in others. A continuous variable is a variable whose value is obtained by measuring, i.e., one which can take on an uncountable set of values. For example, a variable over a non-empty range of the real numbers is continuous, if it can take on any value in that range. The reason is that any range of real numbers between and with is uncountable. Methods of calculus are often used in problems in which the variables are continuous, for example in continuous optimization problems. In statistical theory, the probability distributions of continuous variables can be expressed in terms of probability density functions. In continuous-time dynamics, the variable time is treated as continuous, and the equation describing the evolution of some variable over time is a differential equation. The instantaneous rate of change is a well-defined concept. In contrast, a variable is a discrete variable if and only if there exists a one-to-one correspondence between this variable and , the set of natural numbers. In other words; a discrete variable over a particular interval of real values is one for which, for any value in the range that the variable is permitted to take on, there is a positive minimum distance to the nearest other permissible value. The number of permitted values is either finite or countably infinite. Common examples are variables that must be integers, non-negative integers, positive integers, or only the integers 0 and 1.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (33)
MICRO-512: Image processing II
Study of advanced image processing; mathematical imaging. Development of image-processing software and prototyping in Jupyter Notebooks; application to real-world examples in industrial vision and bio
MATH-513: Metric embeddings
The course aims to introduce the basic concepts and results on metric embeddings, or more precisely on approximate embeddings. This area has been under rapid development since the 90's and it has stro
ME-422: Multivariable control
This course covers methods for the analysis and control of systems with multiple inputs and outputs, which are ubiquitous in modern technology and industry. Special emphasis will be placed on discrete
Afficher plus
Séances de cours associées (139)
Random Walk et diffusion
Explore les concepts de distribution binomiale, de marche aléatoire et de diffusion dans un contexte continu.
Détection et estimation
Couvre les principes fondamentaux de la théorie de la détection et de l'estimation, en se concentrant sur l'erreur moyenne au carré et le test d'hypothèses.
Statistiques exploratoires : Principes fondamentaux de l'analyse des données
Couvre les bases des statistiques exploratoires, y compris les variables, les quantiles, la tendance centrale, la dispersion, les valeurs aberrantes et la robustesse.
Afficher plus
Publications associées (218)

Robot Learning using Tensor Networks

Suhan Narayana Shetty

In various robotics applications, the selection of function approximation methods greatly influences the feasibility and computational efficiency of algorithms. Tensor Networks (TNs), also referred to as tensor decomposition techniques, present a versatile ...
EPFL2024

Generalized Bradley-Terry Models for Score Estimation from Paired Comparisons

Julien René Pierre Fageot, Sadegh Farhadkhani, Oscar Jean Olivier Villemaud, Le Nguyen Hoang

Many applications, e.g. in content recommendation, sports, or recruitment, leverage the comparisons of alternatives to score those alternatives. The classical Bradley-Terry model and its variants have been widely used to do so. The historical model conside ...
AAAI Press2024

Networks with correlated edge processes

Sofia Charlotta Olhede, Mária Süveges

This article proposes methods to model non-stationary temporal graph processes motivated by a hospital interaction data set. This corresponds to modelling the observation of edge variables indicating interactions between pairs of nodes exhibiting dependenc ...
OXFORD UNIV PRESS2023
Afficher plus
Concepts associés (7)
Discrete time and continuous time
In mathematical dynamics, discrete time and continuous time are two alternative frameworks within which variables that evolve over time are modeled. Discrete time views values of variables as occurring at distinct, separate "points in time", or equivalently as being unchanged throughout each non-zero region of time ("time period")—that is, time is viewed as a discrete variable. Thus a non-time variable jumps from one value to another as time moves from one time period to the next.
Discrete optimization
Discrete optimization is a branch of optimization in applied mathematics and computer science. As opposed to continuous optimization, some or all of the variables used in a discrete mathematical program are restricted to be discrete variables—that is, to assume only a discrete set of values, such as the integers. Three notable branches of discrete optimization are: combinatorial optimization, which refers to problems on graphs, matroids and other discrete structures integer programming constraint programming These branches are all closely intertwined however since many combinatorial optimization problems can be modeled as integer programs (e.
Discrétisation
En mathématiques appliquées, la discrétisation est la transposition d'un état (fonction, modèle, variable, équation) en un équivalent . Ce procédé constitue en général une étape préliminaire à la résolution numérique d'un problème ou sa programmation sur machine. Un cas particulier est la dichotomisation où le nombre de classes discrètes est 2, où on peut approcher une variable continue en une variable binaire. La discrétisation est aussi reliée aux mathématiques discrètes, et compte parmi les composantes importantes de la programmation granulaire.
Afficher plus
MOOCs associés (6)
Systèmes d’Information Géographique 2
Ce cours constitue la seconde partie d'un enseignement consacré aux bases théoriques et pratiques des systèmes d’information géographique. Il propose une introduction aux systèmes d’information géogra
Systèmes d’Information Géographique 2
Ce cours constitue la seconde partie d'un enseignement consacré aux bases théoriques et pratiques des systèmes d’information géographique. Il propose une introduction aux systèmes d’information géogra
Geographical Information Systems 2
This course is the second part of a course dedicated to the theoretical and practical bases of Geographic Information Systems (GIS). It offers an introduction to GIS that does not require prior compu
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.