Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les méthodes de classification des documents, y compris k-Nearest-Neighbors, Naïve Bayes Classifier, les modèles de transformateurs, et l'attention multi-têtes.
Couvre l'utilisation de machines vectorielles de support pour la classification multi-classes et l'importance des vecteurs de support dans les limites de classification de serrage.
Couvre les méthodes d'ensemble comme les forêts aléatoires et les baies de Naive de Gaussian, expliquant comment elles améliorent la précision de prédiction et estimer les distributions gaussiennes conditionnelles.
Explore les modèles paramétriques, les techniques d'estimation, les modèles de régression et les classificateurs basés sur les scores dans l'analyse des données.
Introduit le classificateur Naive Bayes, qui couvre les hypothèses d'indépendance, les probabilités conditionnelles et les applications dans la classification des documents et le diagnostic médical.
Explore les règles de voisinage les plus proches, les défis de l'algorithme k-NN, le classificateur Bayes et l'algorithme k-means pour le regroupement.