Loi des proportions définiesLa loi des proportions définies est une loi pondérale énoncée par Joseph Louis Proust, selon laquelle lorsque deux ou plusieurs corps simples s'unissent pour former un composé défini, leur combinaison s'effectue toujours selon un même rapport pondéral. Cette loi constitue, avec la loi des proportions multiples, la base de la stœchiométrie en chimie. On peut, par exemple, mesurer que, quelle que soit la masse d'eau considérée, le rapport entre la masse d'hydrogène et la masse d'oxygène entrant dans sa composition est toujours de 1 pour 8.
Isotopethumb|upright=1.2|Quelques isotopes de l'oxygène, de l'azote et du carbone. On appelle isotopes (d'un certain élément chimique) les nucléides partageant le même nombre de protons (caractéristique de cet élément), mais ayant un nombre de neutrons différent. Autrement dit, si l'on considère deux nucléides dont les nombres de protons sont Z et Z, et les nombres de neutrons N et N, ces nucléides sont dits isotopes si Z = Z et N ≠ N.
Mole (unité)La mole (symbole : mol) est une des unités de base du Système international, adoptée en 1971, qui est principalement utilisée en physique et en chimie. La mole est la quantité de matière d'un système contenant exactement élémentaires (atomes, ions, molécules). Ce nombre, appelé « nombre d'Avogadro », correspond à la valeur numérique fixée de la constante d’Avogadro, , lorsqu’elle est exprimée en . Pour donner un ordre de grandeur, le même nombre en grains de maïs permettrait de recouvrir la surface des États-Unis d'une couche uniforme d'une épaisseur d'environ .
Nombre d'Avogadrovignette|Portrait d'Amedeo Avogadro. Le nombre d'Avogadro (ou constante d'Avogadro) est, en physique et en chimie, le nombre d’entités (atomes, molécules, ions ou particules en général) qui se trouvent dans une mole de matière. Il est nommé en l'honneur du physicien et chimiste Amedeo Avogadro et noté . Il est aussi nommé nombre de Loschmidt (et noté ) dans le monde germanophone, en l'honneur de Josef Loschmidt.
Masse moléculaireLa masse moléculaire (absolue) est la masse d'une molécule, exprimée en unité de masse atomique : « uma » (équivalente à un douzième, soit 1/12, de la masse d'un atome de ). Elle peut être obtenue par l'addition de la masse atomique (absolue, mesurée en uma) de chaque atome de la molécule multipliée par leur indice numérique dans la formule brute ou mesurée expérimentalement par spectrométrie de masse. La masse moléculaire relative est le rapport entre la masse moléculaire absolue (en uma) et l'unité de masse atomique « uma ».
Particule αLes particules alpha (ou rayons alpha) sont une forme de rayonnement émis, principalement, par des noyaux instables de grande masse atomique. Elles sont constituées de deux protons et deux neutrons combinés en une particule identique au noyau d' (hélion) ; elles peuvent donc s'écrire 4He2+. La masse d'une particule alpha est de , ce qui équivaut à une énergie de masse de . Radioactivité α Les particules alpha sont émises par des noyaux radioactifs, comme l'uranium ou le radium, par l'intermédiaire du processus de désintégration alpha.
Énergie de liaisonL'énergie de liaison d'un système de corps en interaction (atomes ou particules) est l'énergie nécessaire pour le dissocier. En chimie et en physique atomique l'énergie de liaison, dite aussi chaleur d'atomisation ou enthalpie de liaison, a pour origine l'interaction électromagnétique. En physique nucléaire l'énergie de liaison a pour origine l'interaction forte (notamment, entre quarks) et à un moindre degré l'interaction faible (pour les nucléides radioactifs β). Énergie de liaison (chimie) Énergie de dis
Spectrométrie de massethumb|right|Spectromètre de masse La spectrométrie de masse est une technique physique d'analyse permettant de détecter et d'identifier des molécules d’intérêt par mesure de leur masse, et de caractériser leur structure chimique. Son principe réside dans la séparation en phase gazeuse de molécules chargées (ions) en fonction de leur rapport masse/charge (m/z). Elle est utilisée dans pratiquement tous les domaines scientifiques : physique, astrophysique, chimie en phase gazeuse, chimie organique, dosages, biologie, médecine, archéologie.
Constante de PlanckEn physique, la constante de Planck, notée , également connue sous le nom de « quantum d'action » depuis son introduction dans la théorie des quanta, est une constante physique qui a la même dimension qu'une énergie multipliée par une durée. Nommée d'après le physicien Max Planck, elle joue un rôle central en mécanique quantique car elle est le coefficient de proportionnalité fondamental qui relie l'énergie d'un photon à sa fréquence () et sa quantité de mouvement à son nombre d'onde () ou, plus généralement, les propriétés discrètes de type corpusculaires aux propriétés continues de type ondulatoire.
Nombre de masse441px|droite Le nombre de masse (A) est le terme employé en chimie et en physique pour représenter le nombre de nucléons, c'est-à-dire la somme du nombre de protons (numéro atomique Z) et du nombre de neutrons (N) constituant le noyau d'un atome. Par exemple, le noyau du carbone 12 (12C) compte 6 protons et 6 neutrons, son nombre de masse est donc 12 (6 + 6). C'est ce nombre qui détermine la variété isotopique d'un élément chimique. On appelle isotopes des éléments chimiques ayant un même numéro atomique, mais un nombre de neutrons et donc un nombre de masse différents.