Concept

Quantum algorithm for linear systems of equations

Résumé
The quantum algorithm for linear systems of equations, also called HHL algorithm, designed by Aram Harrow, Avinatan Hassidim, and Seth Lloyd, is a quantum algorithm published in 2008 for solving linear systems. The algorithm estimates the result of a scalar measurement on the solution vector to a given linear system of equations. The algorithm is one of the main fundamental algorithms expected to provide a speedup over their classical counterparts, along with Shor's factoring algorithm, Grover's search algorithm, and the quantum fourier transform. Provided the linear system is sparse and has a low condition number , and that the user is interested in the result of a scalar measurement on the solution vector, instead of the values of the solution vector itself, then the algorithm has a runtime of , where is the number of variables in the linear system. This offers an exponential speedup over the fastest classical algorithm, which runs in (or for positive semidefinite matrices). An implementation of the quantum algorithm for linear systems of equations was first demonstrated in 2013 by Cai et al., Barz et al. and Pan et al. in parallel. The demonstrations consisted of simple linear equations on specially designed quantum devices. The first demonstration of a general-purpose version of the algorithm appeared in 2018 in the work of Zhao et al. Due to the prevalence of linear systems in virtually all areas of science and engineering, the quantum algorithm for linear systems of equations has the potential for widespread applicability. The HHL algorithm tackles the following problem: given a Hermitian matrix and a unit vector , prepare the quantum state corresponding to the vector that solves the linear system . More precisely, the goal is to prepare a state whose amplitudes equal the elements of . This means, in particular, that the algorithm cannot be used to efficiently retrieve the vector itself. It does, however, allow to efficiently compute expectation values of the form for some observable .
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.