Concept

Quantum algorithm for linear systems of equations

The quantum algorithm for linear systems of equations, also called HHL algorithm, designed by Aram Harrow, Avinatan Hassidim, and Seth Lloyd, is a quantum algorithm published in 2008 for solving linear systems. The algorithm estimates the result of a scalar measurement on the solution vector to a given linear system of equations. The algorithm is one of the main fundamental algorithms expected to provide a speedup over their classical counterparts, along with Shor's factoring algorithm, Grover's search algorithm, and the quantum fourier transform. Provided the linear system is sparse and has a low condition number , and that the user is interested in the result of a scalar measurement on the solution vector, instead of the values of the solution vector itself, then the algorithm has a runtime of , where is the number of variables in the linear system. This offers an exponential speedup over the fastest classical algorithm, which runs in (or for positive semidefinite matrices). An implementation of the quantum algorithm for linear systems of equations was first demonstrated in 2013 by Cai et al., Barz et al. and Pan et al. in parallel. The demonstrations consisted of simple linear equations on specially designed quantum devices. The first demonstration of a general-purpose version of the algorithm appeared in 2018 in the work of Zhao et al. Due to the prevalence of linear systems in virtually all areas of science and engineering, the quantum algorithm for linear systems of equations has the potential for widespread applicability. The HHL algorithm tackles the following problem: given a Hermitian matrix and a unit vector , prepare the quantum state corresponding to the vector that solves the linear system . More precisely, the goal is to prepare a state whose amplitudes equal the elements of . This means, in particular, that the algorithm cannot be used to efficiently retrieve the vector itself. It does, however, allow to efficiently compute expectation values of the form for some observable .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (4)
COM-309: Introduction to quantum information processing
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d
PHYS-641: Quantum Computing
After introducing the foundations of classical and quantum information theory, and quantum measurement, the course will address the theory and practice of digital quantum computing, covering fundament
CS-308: Introduction to quantum computation
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
Afficher plus
Séances de cours associées (69)
L'algorithme de Shor : les entiers de factoring
Couvre les bases de l'algorithme de Shor pour factoriser les entiers et les étapes impliquées dans l'algorithme quantique.
Deutsch et Josza Problème
Couvre le problème de Deutsch et Josza dans le calcul quantique, en se concentrant sur les fonctions booléennes et les oracles.
Algorithmes quantiques: Algorithmes shor
Couvre l'analyse des mesures dans le contexte de l'algorithme Shor.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.