Concept

Infinite dihedral group

In mathematics, the infinite dihedral group Dih∞ is an infinite group with properties analogous to those of the finite dihedral groups. In two-dimensional geometry, the infinite dihedral group represents the frieze group symmetry, p1m1, seen as an infinite set of parallel reflections along an axis. Every dihedral group is generated by a rotation r and a reflection; if the rotation is a rational multiple of a full rotation, then there is some integer n such that rn is the identity, and we have a finite dihedral group of order 2n. If the rotation is not a rational multiple of a full rotation, then there is no such n and the resulting group has infinitely many elements and is called Dih∞. It has presentations and is isomorphic to a semidirect product of Z and Z/2, and to the free product Z/2 * Z/2. It is the automorphism group of the graph consisting of a path infinite to both sides. Correspondingly, it is the isometry group of Z (see also symmetry groups in one dimension), the group of permutations α: Z → Z satisfying |i - j| = |α(i) - α(j)|, for all i, j in Z. The infinite dihedral group can also be defined as the holomorph of the infinite cyclic group. An example of infinite dihedral symmetry is in aliasing of real-valued signals. When sampling a function at frequency f_s (intervals 1/f_s), the following functions yield identical sets of samples: {sin(2π( f+Nf_s) t + φ), N = 0, ±1, ±2, ±3,...}. Thus, the detected value of frequency f is periodic, which gives the translation element r = f_s. The functions and their frequencies are said to be aliases of each other. Noting the trigonometric identity: we can write all the alias frequencies as positive values: . This gives the reflection (f) element, namely f ↦ −f. For example, with f = 0.6f_s and N = −1, f+Nf_s = −0.4f_s reflects to 0.4f_s, resulting in the two left-most black dots in the figure. The other two dots correspond to N = −2 and N = 1. As the figure depicts, there are reflection symmetries, at 0.5f_s, f_s, 1.5f_s, etc.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.