Arbre BEn informatique, un arbre B (appelé aussi B-arbre par analogie au terme anglais « B-tree ») est une structure de données en arbre équilibré. Les arbres B sont principalement mis en œuvre dans les mécanismes de gestion de bases de données et de systèmes de fichiers. Ils stockent les données sous une forme triée et permettent une exécution des opérations d'insertion et de suppression en temps toujours logarithmique. Le principe est de permettre aux nœuds parents de posséder plus de deux nœuds enfants : c'est une généralisation de l’arbre binaire de recherche.
Arbre bicoloreUn arbre bicolore, ou arbre rouge-noir ou arbre rouge et noir est un type particulier d'arbre binaire de recherche équilibré, qui est une structure de données utilisée en informatique théorique. Les arbres bicolores ont été inventés en 1972 par Rudolf Bayer qui les nomme symmetric binary B-trees (littéralement « arbres B binaires symétriques »). Chaque nœud de l'arbre possède en plus de ses données propres un attribut binaire qui est souvent interprété comme sa « couleur » (rouge ou noir).
Type (informatique)vignette|Présentation des principaux types de données. En programmation informatique, un type de donnée, ou simplement un type, définit la nature des valeurs que peut prendre une donnée, ainsi que les opérateurs qui peuvent lui être appliqués. La plupart des langages de programmation de haut niveau offrent des types de base correspondant aux données qui peuvent être traitées directement — à savoir : sans conversion ou formatage préalable — par le processeur.
Nombre de CatalanEn mathématiques, et plus particulièrement en combinatoire, les nombres de Catalan forment une suite d'entiers naturels utilisée dans divers problèmes de dénombrement, impliquant souvent des objets définis de façon récursive. Ils sont nommés ainsi en l'honneur du mathématicien belge Eugène Charles Catalan (1814-1894) qui les a étudiés en 1838, mais étaient déjà connus d'Euler. Le nombre de Catalan d'indice n est défini par : Pour , on peut écrire : (voir Coefficient binomial central).
Algorithme de rechercheEn informatique, un algorithme de recherche est un type d'algorithme qui, pour un domaine, un problème de ce domaine et des critères donnés, retourne en résultat un ensemble de solutions répondant au problème. Supposons que l'ensemble de ses entrées soit divisible en sous-ensemble, par rapport à un critère donné, qui peut être, par exemple, une relation d'ordre. De façon générale, un tel algorithme vérifie un certain nombre de ces entrées et retourne en sortie une ou plusieurs des entrées visées.
Arbre splayUn arbre splay (ou arbre évasé) est un arbre binaire de recherche auto-équilibré possédant en outre la propriété que les éléments auxquels on a récemment accédé (pour les ajouter, les regarder ou les supprimer) sont rapidement accessibles. Ils disposent ainsi d'une complexité amortie en O(log n) pour les opérations courantes comme insertion, recherche ou suppression. Ainsi dans le cas où les opérations possèdent une certaine structure, ces arbres constituent des bases de données ayant de bonnes performances, et ceci reste vrai même si cette structure est a priori inconnue.
Rotation d'un arbre binaire de rechercheEn algorithmique, la rotation d'un arbre binaire de recherche permet de changer la structure d'un arbre binaire de recherche ou ABR sans invalider l'ordre des éléments. Une telle rotation consiste en fait à faire remonter un nœud dans l'arbre et à en faire redescendre un autre. Cette opération est très utilisée dans les arbres équilibrés en général car elle permet de réduire la hauteur d'un arbre en faisant descendre les petits sous-arbres et remonter les grands, ce qui permet de « rééquilibrer » les arbres et d'accélérer de nombreuses opérations sur ces arbres.
Algorithme de parcours en largeurL'algorithme de parcours en largeur (ou BFS, pour Breadth-First Search en anglais) permet le parcours d'un graphe ou d'un arbre de la manière suivante : on commence par explorer un nœud source, puis ses successeurs, puis les successeurs non explorés des successeurs, etc. L'algorithme de parcours en largeur permet de calculer les distances de tous les nœuds depuis un nœud source dans un graphe non pondéré (orienté ou non orienté). Il peut aussi servir à déterminer si un graphe non orienté est connexe.
Théorie des graphesvignette|Un tracé de graphe. La théorie des graphes est la discipline mathématique et informatique qui étudie les graphes, lesquels sont des modèles abstraits de dessins de réseaux reliant des objets. Ces modèles sont constitués par la donnée de sommets (aussi appelés nœuds ou points, en référence aux polyèdres), et d'arêtes (aussi appelées liens ou lignes) entre ces sommets ; ces arêtes sont parfois non symétriques (les graphes sont alors dits orientés) et sont alors appelées des flèches ou des arcs.
Tri par tasthumb|300px|Animation montrant le fonctionnement du tri par tas (Heapsort). En informatique, le tri par tas est un algorithme de tri par comparaisons. Cet algorithme est de complexité asymptotiquement optimale, c'est-à-dire que l'on démontre qu'aucun algorithme de tri par comparaison ne peut avoir de complexité asymptotiquement meilleure. Sa complexité est proportionnelle à où est la longueur du tableau à trier.