Concept

Taquin

Résumé
right|thumb|Taquin résolu Le taquin est un jeu solitaire en forme de damier créé vers 1870 aux États-Unis. Sa théorie mathématique a été publiée par l'American Journal of mathematics pure and applied en 1879. En 1891, son invention fut revendiquée par Sam Loyd, au moment où le jeu connaissait un engouement considérable, tant aux États-Unis qu'en Europe. Il est composé de 15 petits carreaux numérotés de 1 à 15 qui glissent dans un cadre prévu pour 16. Il consiste à remettre dans l'ordre les 15 carreaux à partir d'une configuration initiale quelconque. Le principe a été étendu à toutes sortes d'autres jeux. La plupart sont à base de blocs rectangulaires plutôt que carrés, mais le but est toujours de disposer les blocs d'une façon déterminée par un nombre minimal de mouvements. Le Rubik's Cube est aujourd'hui considéré comme l'un des « descendants » du taquin. Dans l'hypothèse où la case vide se trouve en bas à droite : remettre le jeu dans l'ordre ligne par ligne en commençant par la ligne du haut ; quand il ne reste plus que deux lignes mélangées, les réordonner colonne par colonne en commençant par celle de gauche. Cette méthode ne garantit pas qu'un nombre minimal de mouvements sera effectué, mais est simple à mémoriser et aboutit dans tous les cas où une solution est possible. right|thumb|Position initiale du taquin de Sam Loyd Loyd affirma qu'il avait « rendu le monde entier fou » avec un taquin modifié. Dans la configuration proposée, les carreaux 14 et 15 étaient inversés, l'espace vide étant placé en bas à droite. Loyd prétendait avoir promis à celui qui remettrait les carreaux dans l'ordre, mais la récompense n'aurait jamais été réclamée. La résolution de ce problème est impossible. D'une part, il faut en effet échanger les places des carreaux 14 et 15, et l'on peut montrer que cette opération nécessite un nombre impair de glissements. D'autre part, il faut que la case vide retrouve sa place initiale, opération qui, quant à elle, nécessite un nombre pair de glissements.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.