Common and special causes are the two distinct origins of variation in a process, as defined in the statistical thinking and methods of Walter A. Shewhart and W. Edwards Deming. Briefly, "common causes", also called natural patterns, are the usual, historical, quantifiable variation in a system, while "special causes" are unusual, not previously observed, non-quantifiable variation. The distinction is fundamental in philosophy of statistics and philosophy of probability, with different treatment of these issues being a classic issue of probability interpretations, being recognised and discussed as early as 1703 by Gottfried Leibniz; various alternative names have been used over the years. The distinction has been particularly important in the thinking of economists Frank Knight, John Maynard Keynes and G. L. S. Shackle. In 1703, Jacob Bernoulli wrote to Gottfried Leibniz to discuss their shared interest in applying mathematics and probability to games of chance. Bernoulli speculated whether it would be possible to gather mortality data from gravestones and thereby calculate, by their existing practice, the probability of a man currently aged 20 years outliving a man aged 60 years. Leibniz replied that he doubted this was possible:Nature has established patterns originating in the return of events but only for the most part. New illnesses flood the human race, so that no matter how many experiments you have done on corpses, you have not thereby imposed a limit on the nature of events so that in the future they could not vary. This captures the central idea that some variation is predictable, at least approximately in frequency. This common-cause variation is evident from the experience base. However, new, unanticipated, emergent or previously neglected phenomena (e.g. "new diseases") result in variation outside the historical experience base. Shewhart and Deming argued that such special-cause variation is fundamentally unpredictable in frequency of occurrence or in severity.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
BIO-603(LG): Practical - LaManno Lab
Give students a feel for how single-cell genomics datasets are analyzed from raw data to data interpretation. Different steps of the analysis will be demonstrated and the most common statistical and b
Séances de cours associées (1)
Economie des processus et monitoring
Se penche sur les coûts de fabrication, les limites de processus, les méthodes de surveillance, les coûts des matériaux et le contrôle de la qualité.
Publications associées (5)
Concepts associés (1)
Maîtrise statistique des procédés
La maîtrise statistique des procédés (MSP) (Statistical Process Control ou SPC en anglais), est le contrôle statistique des processus. Au travers de représentations graphiques montrant les écarts (en + ou en - ou en =) à une valeur donnée de référence, il sert à anticiper sur les mesures à prendre pour améliorer n'importe quel processus de fabrication industrielle (automobile, métallurgie, etc.). C'est surtout au Japon après la Seconde Guerre mondiale que cette discipline s'est implantée grâce à William Edwards Deming, disciple de Walter A.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.