Relaxation continueEn informatique théorique et en recherche opérationnelle, la relaxation continue est une méthode qui consiste à interpréter de façon continue un problème combinatoire ou discret. Cette méthode est utilisée afin d'obtenir des informations sur le problème discret initial et parfois même pour obtenir sa solution. Les problèmes discrets ou combinatoires sont en effet très difficiles à traiter en raison de l'explosion combinatoire et il est courant de les traiter par une méthode de séparation et évaluation (branch and bound en anglais) : la relaxation continue fait partie des algorithmes d'évaluation nécessaire à la mise en œuvre de cette méthode.
Problème de couverture par ensemblesEn informatique théorique, le problème de couverture par ensembles (Set Cover problem en anglais) est un problème d'algorithmique particulièrement important car c'est l'un des 21 problèmes NP-complets de Karp . Étant donné un ensemble A, on dit qu'un élément e est couvert par A si e appartient à A. Étant donné un ensemble U et une famille S de sous-ensembles de U, le problème consiste à couvrir tous les éléments U avec une sous-famille de S la plus petite possible.
Feasible regionIn mathematical optimization, a feasible region, feasible set, search space, or solution space is the set of all possible points (sets of values of the choice variables) of an optimization problem that satisfy the problem's constraints, potentially including inequalities, equalities, and integer constraints. This is the initial set of candidate solutions to the problem, before the set of candidates has been narrowed down.
Méthode de l'ellipsoïdeEn optimisation mathématique, la méthode de l'ellipsoïde est une méthode itérative utilisée pour minimiser des fonctions convexes. En informatique théorique, cette méthode est connue comme étant le premier algorithme de complexité polynomiale découvert pour résoudre les problèmes d'optimisation linéaire. L'algorithme construit une suite d'ellipsoïdes de plus en plus petits, qui enserrent à chaque étape le minimum de la fonction objectif.
Contrainte (mathématiques)En mathématiques, une contrainte est une condition que doit satisfaire la solution d'un problème d'optimisation. On distingue deux types de contraintes : les contraintes d'égalité et les contraintes en inégalité. L'ensemble des solutions satisfaisant toutes les contraintes est appelé l'ensemble admissible. On considère un problème d'optimisation classique : avec et et désigne le vecteur . Dans cet exemple, la première ligne montre la fonction à minimiser (appelée fonction objectif ou fonction-coût) mais aussi l'ensemble où la solution doit être recherché, ici C.
Méthode des plans sécantsvignette|Application de la méthode des plans sécants au problème du voyageur de commerce. En mathématiques, et spécialement en optimisation linéaire en nombres entiers, la méthode des plans sécants, ou cutting plane method, est une méthode utilisée pour trouver une solution entière d'un problème d'optimisation linéaire. Elle fut introduite par Ralph E. Gomory puis étudiée par Gomory et Václav Chvátal. Le principe de la méthode est d'ajouter des contraintes au programme linéaire pour le raffiner, et le rapprocher des solutions intégrales.
Branch and cutBranch and cut est une méthode d'optimisation combinatoire pour résoudre des problèmes d'optimisation linéaire en nombres entiers. Cette méthode utilise la méthode de séparation et évaluation et la méthode des plans sécants. Le principe est de résoudre la relaxation continue du programme linéaire en nombres entiers à l'aide de l'algorithme du simplexe. Lorsqu'une solution optimale est trouvée, et que l'une des variables qu'on souhaite entières a une valeur non entière, on utilise un algorithme de plan sécant pour trouver une contrainte linéaire satisfaite par toutes les valeurs entières de la solution mais violée par la valeur fractionnaire.
Algorithme de KarmarkarL’algorithme de Karmarkar est un algorithme introduit par Narendra Karmarkar en 1984 pour résoudre les problèmes d'optimisation linéaire. C'est le premier algorithme réellement efficace qui résout ces problèmes en un temps polynomial. La méthode de l'ellipsoïde fonctionne aussi en temps polynomial mais est inefficace en pratique. En posant le nombre de variables et le nombre de bits d'entrée de l'algorithme, l'algorithme de Karmarkar réalise opérations sur bits à comparer aux opérations pour la méthode des ellipsoïdes.
Optimisation non linéaireEn optimisation, vue comme branche des mathématiques, l'optimisation non linéaire (en anglais : nonlinear programming – NLP) s'occupe principalement des problèmes d'optimisation dont les données, i.e., les fonctions et ensembles définissant ces problèmes, sont non linéaires, mais sont aussi différentiables autant de fois que nécessaire pour l'établissement des outils théoriques, comme les conditions d'optimalité, ou pour la bonne marche des algorithmes de résolution qui y sont introduits et analysés.
Processus de décision markovienEn théorie de la décision et de la théorie des probabilités, un processus de décision markovien (en anglais Markov decision process, MDP) est un modèle stochastique où un agent prend des décisions et où les résultats de ses actions sont aléatoires. Les MDPs sont utilisés pour étudier des problèmes d'optimisation à l'aide d'algorithmes de programmation dynamique ou d'apprentissage par renforcement. Les MDPs sont connus depuis les années 1950. Une grande contribution provient du travail de Ronald A.