MICRO-401: Machine learning programmingThis is a practice-based course, where students program algorithms in machine learning and evaluate the performance of the algorithm thoroughly using real-world dataset.
MATH-251(e): Numerical analysisLe cours présente des méthodes numériques pour la résolution de problèmes mathématiques comme des systèmes d'équations linéaires ou non linéaires, l'approximation de fonctions, l'intégration et la dér
MATH-251(b): Numerical analysisThe students will learn key numerical techniques for solving standard mathematical problems in science and engineering. The underlying mathematical theory and properties are discussed.
PHYS-442: Modeling and design of experimentsIn the academic or industrial world, to optimize a system, it is necessary to establish strategies for the experimental approach. The DOE allows you to choose the best set of measurement points to min
EE-715: Optimal controlThis doctoral course provides an introduction to optimal control covering fundamental theory, numerical implementation and problem formulation for applications.
CS-233(a): Introduction to machine learning (BA3)Machine learning and data analysis are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analy