EE-568: Reinforcement learningThis course describes theory and methods for Reinforcement Learning (RL), which revolves around decision making under uncertainty. The course covers classic algorithms in RL as well as recent algorith
MATH-251(c): Numerical analysisLe cours présente des méthodes numériques pour la résolution de problèmes mathématiques comme des systèmes d'équations linéaires ou non linéaires, approximation de fonctions, intégration et dérivation
DH-406: Machine learning for DHThis course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
MATH-611: Scientific programming for EngineersThe students will acquire a solid knowledge on the processes necessary to design, write and use scientific software. Software design techniques will be used to program a multi-usage particles code, ai
ME-425: Model predictive controlProvide an introduction to the theory and practice of Model Predictive Control (MPC). Main benefits of MPC: flexible specification of time-domain objectives, performance optimization of highly complex
CS-455: Topics in theoretical computer scienceThe students gain an in-depth knowledge of several current and emerging areas of theoretical computer science. The course familiarizes them with advanced techniques, and develops an understanding of f
MGT-530: Sustainable logistics operationsWe address quantitatively the management of logistics operations, focusing notably on their environmental impact. Considering practical situations, focus is paid on the optimization of logistics syste