La comparaison par paires est une méthode consistant à comparer des éléments deux à deux. De nombreux travaux théoriques ont démontré que les relations complexes entre divers éléments indépendants pouvaient être étudiées au moyen de comparaisons analogiques binaires, c'est-à-dire en les comparant deux à deux. En effet, une telle démarche permet de décomposer le problème posé en réduisant la masse d’informations à acquérir et à intégrer d’une part, en concentrant la réflexion du répondant sur ses composantes essentielles, d’autre part. Sans entrer dans des détails mathématiques complexes, le calcul matriciel représente un environnement simple et efficace, disposant de tous les outils nécessaires pour réaliser avec efficacité de telles comparaisons. Le recours à un ordinateur pour effectuer, au moyen d’un logiciel approprié, les phases d’acquisition, de calcul et de contrôle en rend aujourd’hui la pratique particulièrement aisée pour tous les néophytes. Il s’agit en effet, de comparer en termes de ratios deux à deux, compte tenu d’un but poursuivi B et au moyen d’un questionnement approprié q, un ensemble d’éléments E1 à En, chaque élément prenant automatiquement et logiquement le ratio 1 / 1 = 1 ou 1 x 1 = 1, lorsque comparé à lui-même au sein d'une matrice. En pratique, l’intersection de chaque ligne et de chaque colonne de cette matrice figure le ratio existant entre les deux éléments en vis-à-vis, tel qu’indiqué par le répondant. De part et d’autre de la diagonale comportant nécessairement des ratios égaux à 1, doivent donc logiquement figurer des ratios réciproques : si le ratio E3 / E2 est égal à 2, alors le ratio E2 / E3 doit être égal à 1⁄2. A l’appui, prenons l’exemple suivant : • B = choix d’une voiture • q = quelle voiture préférez-vous ? • E1 = voiture A • E2 = voiture B Si la voiture A est préférée 2 fois plus que la voiture B, alors, la voiture B est préférée 2 fois moins (soit 1⁄2) que la voiture A. Vous constaterez donc qu’il suffit en pratique de ne renseigner qu’une demi matrice pour obtenir des résultats complets.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.