Problème de WaringEn théorie des nombres, le problème de Waring, proposé en 1770 par Edward Waring consiste à déterminer si, pour chaque entier naturel k, il existe un nombre s tel que tout entier positif soit somme de s puissances k-ièmes d'entiers positifs. La réponse affirmative, apportée par David Hilbert en 1909, est parfois appelée théorème de Hilbert-Waring. La détermination, pour chaque exposant k, du plus petit s vérifiant cette propriété — noté g(k) — n'était pas pour autant résolue.
Théorie des criblesEn mathématiques, la théorie des cribles est une partie de la théorie des nombres ayant pour but d'estimer, à défaut de dénombrer, les cardinaux de sous-ensembles (éventuellement infinis) de N en approchant la fonction indicatrice du sous-ensemble considéré. Cette technique a pour origine le crible d'Ératosthène, et dans ce cas, le but était d'étudier l'ensemble des nombres premiers. Un des nombreux résultats que l'on doit aux cribles a été découvert par Viggo Brun en 1919.
Conjecture de GoldbachLa conjecture de Goldbach est l'assertion mathématique qui s’énonce comme suit : Formulée en 1742 par Christian Goldbach, c’est l’un des plus vieux problèmes non résolus de la théorie des nombres et des mathématiques. Il partage avec l'hypothèse de Riemann et la conjecture des nombres premiers jumeaux le numéro 8 des problèmes de Hilbert, énoncés par celui-ci en 1900.