Problème du nombre de classes pour les corps quadratiques imaginairesEn mathématiques, le problème du nombre de classes de Gauss pour les corps quadratiques imaginaires, au sens usuel, est de fournir pour chaque entier n ≥ 1, la liste complète des corps quadratiques imaginaires dont l'anneau des entiers a un nombre de classes égal à n. C'est une question de calcul effectif. La première démonstration (Hans Heilbronn, 1934) qu'une telle liste est finie ne fournissait pas, même en théorie, un moyen de la calculer (voir Résultats effectifs en théorie des nombres).
Ordre (théorie des anneaux)En mathématiques, un ordre au sens de la théorie des anneaux est un sous-anneau O d'un anneau A tel que l'anneau A est une algèbre de dimension finie sur le corps Q des nombres rationnels, O engendre A sur Q, si bien que QO = A et O est un Z- dans A (c'est-à-dire un Z-sous-module de type fini sans torsion). Les deux dernières conditions signifient qu'additivement, O est un groupe abélien libre engendré par une base du Q-espace vectoriel A.
Borne de MinkowskiEn théorie algébrique des nombres, la borne de Minkowski donne un majorant de la norme des idéaux à considérer pour déterminer le nombre de classes d'un corps de nombres K. Il porte le nom du mathématicien Hermann Minkowski. Soit D le discriminant de K, n son degré sur , et le nombre de plongements complexes où est le nombre de plongements réels. Alors chaque classe du groupe des classes d'idéaux de K contient un idéal de O dont la norme est inférieure ou égale à la borne de Minkowski La constante de Minkowski pour le corps K est cette borne MK.
Formule du nombre de classesEn théorie des nombres, la formule du nombre de classes relie de nombreux invariants importants d'un corps de nombres à une valeur spécifique de sa fonction zêta de Dedekind. Nous partons des données suivantes : K est un corps de nombres. où est le nombre de plongements réels de K, et plongements complexes K. la fonction zêta de Dedekind de K. le nombre de classes, le cardinal du groupe des classes d'idéaux de K. le régulateur de K. le nombre de racines de l'unité dans K. est le discriminant de l'extension .
Corps de classes de HilbertEn théorie algébrique des nombres, le corps de Hilbert H(K) d'un corps de nombres algébriques K est l'extension abélienne non ramifiée maximale de ce corps de nombres. Cet objet doit son nom au mathématicien allemand David Hilbert. Son étude est à la fois une étape importante, et un archétype, pour la théorie des corps de classes : via l'isomorphisme de réciprocité (symbole d'Artin) de la correspondance du corps de classes, le groupe de Galois Gal(H(K)/K) est isomorphe au groupe des classes du corps K.