Class number problemIn mathematics, the Gauss class number problem (for imaginary quadratic fields), as usually understood, is to provide for each n ≥ 1 a complete list of imaginary quadratic fields (for negative integers d) having class number n. It is named after Carl Friedrich Gauss. It can also be stated in terms of discriminants. There are related questions for real quadratic fields and for the behavior as .
Order (ring theory)In mathematics, an order in the sense of ring theory is a subring of a ring , such that is a finite-dimensional algebra over the field of rational numbers spans over , and is a -lattice in . The last two conditions can be stated in less formal terms: Additively, is a free abelian group generated by a basis for over . More generally for an integral domain contained in a field , we define to be an -order in a -algebra if it is a subring of which is a full -lattice.
Minkowski's boundIn algebraic number theory, Minkowski's bound gives an upper bound of the norm of ideals to be checked in order to determine the class number of a number field K. It is named for the mathematician Hermann Minkowski. Let D be the discriminant of the field, n be the degree of K over , and be the number of complex embeddings where is the number of real embeddings. Then every class in the ideal class group of K contains an integral ideal of norm not exceeding Minkowski's bound Minkowski's constant for the field K is this bound MK.
Class number formulaIn number theory, the class number formula relates many important invariants of a number field to a special value of its Dedekind zeta function. We start with the following data: K is a number field. [K : Q] = n = r1 + 2r2, where r1 denotes the number of real embeddings of K, and 2r2 is the number of complex embeddings of K. ζK(s) is the Dedekind zeta function of K. hK is the class number, the number of elements in the ideal class group of K. RegK is the regulator of K. wK is the number of roots of unity contained in K.
Hilbert class fieldIn algebraic number theory, the Hilbert class field E of a number field K is the maximal abelian unramified extension of K. Its degree over K equals the class number of K and the Galois group of E over K is canonically isomorphic to the ideal class group of K using Frobenius elements for prime ideals in K. In this context, the Hilbert class field of K is not just unramified at the finite places (the classical ideal theoretic interpretation) but also at the infinite places of K.