In graph theory, a clique graph of an undirected graph G is another graph K(G) that represents the structure of cliques in G. Clique graphs were discussed at least as early as 1968, and a characterization of clique graphs was given in 1971. A clique of a graph G is a set X of vertices of G with the property that every pair of distinct vertices in X are adjacent in G. A maximal clique of a graph G is a clique X of vertices of G, such that there is no clique Y of vertices of G that contains all of X and at least one other vertex. Given a graph G, its clique graph K(G) is a graph such that every vertex of K(G) represents a maximal clique of G; and two vertices of K(G) are adjacent when the underlying cliques in G share at least one vertex in common. The clique graph K(G) can also be characterized as the intersection graph of the maximal cliques of G. A graph H is the clique graph K(G) of another graph if and only if there exists a collection C of cliques in H whose union covers all the edges of H, such that C forms a Helly family. This means that, if S is a subset of C with the property that every two members of S have a non-empty intersection, then S itself should also have a non-empty intersection. However, the cliques in C do not necessarily have to be maximal cliques. When H =K(G), a family C of this type may be constructed in which each clique in C corresponds to a vertex v in G, and consists of the cliques in G that contain v. These cliques all have v in their intersection, so they form a clique in H. The family C constructed in this way has the Helly property, because any subfamily of C with pairwise nonempty intersections must correspond to a clique in G, which can be extended to a maximal clique that belongs to the intersection of the subfamily. Conversely, when H has a Helly family C of its cliques, covering all edges of H, then it is the clique graph K(G) for a graph G whose vertices are the disjoint union of the vertices of H and the elements of C.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.