MATH-131: Probability and statisticsLe cours présente les notions de base de la théorie des probabilités et de l'inférence statistique. L'accent est mis sur les concepts principaux ainsi que les méthodes les plus utilisées.
COM-406: Foundations of Data ScienceWe discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
MICRO-428: MetrologyThe course deals with the concept of measuring in different domains, particularly in the electrical, optical, and microscale domains. The course will end with a perspective on quantum measurements, wh
COM-300: Stochastic models in communicationL'objectif de ce cours est la maitrise des outils des processus stochastiques utiles pour un ingénieur travaillant dans les domaines des systèmes de communication, de la science des données et de l'i
MATH-442: Statistical theory-This course gives a mostly rigourous treatment of some statistical methods outside the context of standard likelihood theory.
CS-450: Algorithms IIA first graduate course in algorithms, this course assumes minimal background, but moves rapidly. The objective is to learn the main techniques of algorithm analysis and design, while building a reper
EE-566: Adaptation and learningIn this course, students learn to design and master algorithms and core concepts related to inference and learning from data and the foundations of adaptation and learning theories with applications.