MétaheuristiqueUne métaheuristique est un algorithme d’optimisation visant à résoudre des problèmes d’optimisation difficile (souvent issus des domaines de la recherche opérationnelle, de l'ingénierie ou de l'intelligence artificielle) pour lesquels on ne connaît pas de méthode classique plus efficace. Les métaheuristiques sont généralement des algorithmes stochastiques itératifs, qui progressent vers un optimum global (c'est-à-dire l'extremum global d'une fonction), par échantillonnage d’une fonction objectif.
Evolutionary computationIn computer science, evolutionary computation is a family of algorithms for global optimization inspired by biological evolution, and the subfield of artificial intelligence and soft computing studying these algorithms. In technical terms, they are a family of population-based trial and error problem solvers with a metaheuristic or stochastic optimization character. In evolutionary computation, an initial set of candidate solutions is generated and iteratively updated.
Algorithme évolutionnistevignette|redresse=1.2|Un algorithme évolutionnaire utilise itérativement des opérateurs de sélections (en bleu) et de variation (en jaune). i : initialisation, f(X) : évaluation, ? : critère d'arrêt, Se : sélection, Cr : croisement, Mu : mutation, Re : remplacement, X* : optimum. Les algorithmes évolutionnistes ou algorithmes évolutionnaires (evolutionary algorithms en anglais), sont une famille d'algorithmes dont le principe s'inspire de la théorie de l'évolution pour résoudre des problèmes divers.
Algorithme génétiqueLes algorithmes génétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode exacte (ou que la solution est inconnue) pour le résoudre en un temps raisonnable. Les algorithmes génétiques utilisent la notion de sélection naturelle et l'appliquent à une population de solutions potentielles au problème donné.