Résumé
La transformation bilinéaire est une méthode de traitement numérique du signal pour la conception de filtres numériques calqués sur des filtres analogiques. Elle permet le passage d'une représentation continue à une représentation discrète des filtres. La transformation bilinéaire est un cas particulier de transformation de Möbius. L'image de la droite imaginaire () est le cercle unité dans le plan complexe. Cette propriété permet de passer de la variable de la transformée de Laplace (la transformée de Fourier est obtenue en prenant ) à la variable de la transformée en Z (la transformée de Fourier est obtenue en prenant ). La méthode de la transformation bilinéaire est d'appliquer la substitution dans la transformée de Laplace d'un filtre analogique. On obtient l'expression de la transformée en Z d'un filtre discret L'image du semi-plan complexe gauche () par la transformation bilinéaire est le disque unité. La conséquence de cette propriété est que la transformation bilinéaire préserve la stabilité d'un filtre. Chaque point de l'axe imaginaire a pour image le point , où les pulsations et sont reliées par . L'égalité entre et dans l'approximation des faibles pulsations () est obtenue pour ( est le temps entre chaque échantillon). Lorsque décrit l'intervalle , décrit l'intervalle . Le filtre obtenu par la méthode de la transformation bilinéaire a les mêmes propriétés que le filtre analogique (même réponse en gain, même réponse en phase), avec toutefois une contraction de l'axe fréquentiel. La distorsion de l'échelle des fréquences est d'autant plus forte que l'on s'approche de la fréquence de Nyquist. La méthode de la transformation bilinéaire correspond au développement suivant lorsque le temps de discrétisation converge vers 0 : dont l'inverse est Une justification de ce développement est la méthode des trapèzes décrite ci-dessous. Sur l'image de gauche l'aire sous la courbe vaut: Si on définit les bornes comme deux échantillons temporels au pas de temps alors on a : et ce qui donne l'aire sous la courbe: Si on
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (11)
Transformation bilinéaire
La transformation bilinéaire est une méthode de traitement numérique du signal pour la conception de filtres numériques calqués sur des filtres analogiques. Elle permet le passage d'une représentation continue à une représentation discrète des filtres. La transformation bilinéaire est un cas particulier de transformation de Möbius. L'image de la droite imaginaire () est le cercle unité dans le plan complexe.
Filtre à réponse impulsionnelle infinie
Un filtre à réponse impulsionnelle infinie ou filtre RII (en anglais infinite impulse response filter ou IIR filter) est un type de filtre électronique caractérisé par une réponse fondée sur les valeurs du signal d'entrée ainsi que les valeurs antérieures de cette même réponse. Il est nommé ainsi parce que dans la majorité des cas, la réponse impulsionnelle de ce type de filtre est de durée théoriquement infinie. Il est aussi désigné par l'appellation de filtre récursif. Ce filtre est l'un des deux types de filtre numérique linéaire.
Filtre numérique
En électronique, un filtre numérique est un élément qui effectue un filtrage à l'aide d'une succession d'opérations mathématiques sur un signal discret. C'est-à-dire qu'il modifie le contenu spectral du signal d'entrée en atténuant ou éliminant certaines composantes spectrales indésirées. Contrairement aux filtres analogiques, qui sont réalisés à l'aide d'un agencement de composantes physiques (résistance, condensateur, inductance, transistor, etc.
Afficher plus
Cours associés (14)
EE-205: Signals and systems (for EL&IC)
This class teaches the theory of linear time-invariant (LTI) systems. These systems serve both as models of physical reality (such as the wireless channel) and as engineered systems (such as electrica
MICRO-511: Image processing I
Introduction to the basic techniques of image processing. Introduction to the development of image-processing software and to prototyping in JAVA. Application to real-world examples in industrial visi
COM-303: Signal processing for communications
Students learn digital signal processing theory, including discrete time, Fourier analysis, filter design, adaptive filtering, sampling, interpolation and quantization; they are introduced to image pr
Afficher plus
Séances de cours associées (69)
Systèmes LTI: Analyse et propriétés
Couvre l'analyse et les propriétés des systèmes linéaires invariants du temps (LTI).
Rapprochement dérivé: Méthodes à temps discret
Couvre les principes de l'approximation dérivée dans les systèmes à temps discret.
Signaux et systèmes II: Équations de différence et opérateurs
Couvre les équations de différence, la méthode z-transform, l'équivalence du système et les critères de stabilité.
Afficher plus