The concept of entropy developed in response to the observation that a certain amount of functional energy released from combustion reactions is always lost to dissipation or friction and is thus not transformed into useful work. Early heat-powered engines such as Thomas Savery's (1698), the Newcomen engine (1712) and the Cugnot steam tricycle (1769) were inefficient, converting less than two percent of the input energy into useful work output; a great deal of useful energy was dissipated or lost. Over the next two centuries, physicists investigated this puzzle of lost energy; the result was the concept of entropy. In the early 1850s, Rudolf Clausius set forth the concept of the thermodynamic system and posited the argument that in any irreversible process a small amount of heat energy δQ is incrementally dissipated across the system boundary. Clausius continued to develop his ideas of lost energy, and coined the term entropy. Since the mid-20th century the concept of entropy has found application in the field of information theory, describing an analogous loss of data in information transmission systems. In 1803, mathematician Lazare Carnot published a work entitled Fundamental Principles of Equilibrium and Movement. This work includes a discussion on the efficiency of fundamental machines, i.e. pulleys and inclined planes. Carnot saw through all the details of the mechanisms to develop a general discussion on the conservation of mechanical energy. Over the next three decades, Carnot's theorem was taken as a statement that in any machine the accelerations and shocks of the moving parts all represent losses of moment of activity, i.e. the useful work done. From this Carnot drew the inference that perpetual motion was impossible. This loss of moment of activity was the first-ever rudimentary statement of the second law of thermodynamics and the concept of 'transformation-energy' or entropy, i.e. energy lost to dissipation and friction. Carnot died in exile in 1823.
Dasaraden Mauree, Fabian Guignard